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Abstract

This paper studies which operational characteristics of the fresh produce supply chain help or
hinder the viability of local food. We show how short lead time, constrained capacity, and the way
prices are set in the fresh produce market create the local food paradox: the characteristics of local
food that are appealing to the retailer induce supply chain dynamics that hurt the local farmer. A
distinguishing characteristic of locally sourced fresh produce that has many operational implications
is that it is grown closer to the end consumer than produce from the mainstream food supply chain.
The local fresh produce supply is also often capacity constrained. Thus, the retailer cannot source
only locally grown produce to satisfy demand. We find that the shorter lead time implied by local
food proximity and the capacity constraint results in a retail order policy that is disadvantageous
for the local farmer. The retailer’s optimal order policy effectively uses the mainstream farm to
satisfy the stable baseload demand and the local farm to react to demand volatility. However,
unlike typical dual sourcing scenarios, the local farmer cannot capture any of the value created by
his responsiveness because the produce price is set by the market. We study three mechanisms
that can improve conditions for the local farm: coordination, backhauling, and a retail order
policy, manager’s discretion, that explicitly supports the local farmer. The operational mechanisms,
coordination and backhauling, help the local farmer by making local supply more attractive to the
retailer, inducing her to order more local produce. Coordination reduces the retailer’s mismatch
cost whereas backhauling increases the average margin. The manager’s discretion order policy
helps the local farm at the expense of retail profit. However, we show how combining manager’s
discretion with backhauling can benefit the retailer and local farmer. We also explore two ways in
which sourcing local food can affect the environment: through the impact on food miles and by
leveraging extended shelf-life to reduce retail food waste.

1 Introduction

The purpose of this paper is to determine which operational characteristics of the food supply chain

help or hinder the viability of local food. In particular, we study the fresh produce supply chain.

There are many dimensions associated with local food, including: 1) Proximity: food is grown a short

distance from the end consumer 2) Quality: food is fresher and tastes better 3) Environment: fewer

food miles are associated with local food and more environmentally friendly farming methods are used

4) Society: there are fair working conditions and compensation for farm workers.

In this paper, we focus on the proximity dimension because it is unequivocal and has many op-

erational implications. The mainstream (industrial) food supply is typically concentrated in specific

geographic regions. For example, two thirds of the acreage used to grow fresh tomatoes in the United
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States are in California or Florida (USDA 2012), and 60% of spinach is produced in California (AGMRC

2012). Thus, for the majority of consumers, fresh tomatoes from the mainstream supply travel a long

distance in order to reach the end consumer. Although there is no precise distance definition for

“local” food, common specifications used are “within 400 miles” or “within state.” The difference

in distance traveled affects the lead time of fresh produce supply. Moreover, mainstream farms are

typically located in rural areas allowing farms to be large, whereas local farms are by definition close

to urban areas where competition for land has forced farms to be smaller. Thus, the geographic char-

acteristics of the fresh produce supply chain affect lead time and operational scale – two important

operational parameters that we analyze in our model.

However, we acknowledge that quality, environment, and society are compelling arguments used

by and for those interested in buying and promoting local food. Although every piece of local food is

clearly not higher quality, better for the environment, and better for society than mainstream food,

there is a general sense that food from local farms are more likely to exhibit these characteristics

than mainstream food. In this paper, we do not take a position on whether local food is better than

mainstream food. We take as given that there is increasing interest in growing the presence of local

food in the food supply chain and investigate mechanisms for doing so.

We approach this by analyzing the operations of the fresh produce supply chain and showing how

the structure and operating policies affect the presence of local food in our food supply. Using our

understanding of how the fresh produce supply chain works, we identify and quantify the impact of

operational changes that would increase the presence of local food in the fresh produce supply chain.

The local farm that is the focus of our analysis is a mid-sized farm that grows for the wholesale market.

The farm is too big to sell directly to consumers (e.g., through farmer’s markets and community

supported agriculture channels), but is not big enough to fill the entire demand for a large retail

grocer.

Our model analyzes the optimal order policy of a grocery retailer who can order from a mainstream

supplier that is located a far distance from the retail store and a local farm that is close. We derive the

retailer’s optimal order policy under two objective functions: maximizing profit and achieving a target

service level. The local farm is capacity constrained and there is local supply uncertainty, but the lead

time from the local farm to the retail store is significantly shorter than from the mainstream farm. We
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find that the retailer’s optimal order policy is to order a constant quantity from the mainstream farmer

and take advantage of the local farm’s short lead time to react to demand volatility. This benefits

the retailer by allowing her to reduce her mismatch cost. However, the local farmer sees a volatile

order pattern, resulting in high overall risk for his business and also creating operational challenges

such as staffing pick and pack lines. Unlike other dual sourcing situations where a highly responsive

supplier can charge a premium for its service, fresh produce prices are determined by the market on

the day the produce is sold. Thus, the local farmer has a significant disadvantage in the fresh produce

supply chain: the pricing convention prevents the farmer from charging a premium for responsiveness.

Our results show that there is a local food paradox : The proximity of the local food supply to the

end consumer allows for shorter leadtime, thus providing an operational advantage for the retailer.

However, we show that by exercising this advantage, the retailer places an operational burden on the

local farm by using the local supplier to react to demand volatility.

We use our characterization of the fresh produce supply chain dynamics to investigate three mech-

anisms that could improve operating conditions for the local farmer: 1) coordination, 2) backhaul-

ing, and 3) manager’s discretion order policy. An organization such as Red Tomato acts as a bro-

ker/distributor that aggregates produce from multiple local farms, effectively creating a larger, more

reliable local supplier (redtomato.org, Alvarez et al. (2010)). Through coordination, Red Tomato can

increase local capacity and decrease local supply uncertainty. This allows the retailer to better utilize

the local farm to reduce mismatch cost. We show that this results in higher local order quantities, a

more stable order pattern, and higher retail profit.

In some cases, the retailer may be able to reduce the transportation cost of locally sourced produce

by leveraging backhauling. As trucks return empty from the retail store to the distribution center,

they can be diverted to local farms to pick up fresh produce. Our analysis shows that the backhauling

mechanism works very differently from coordination. Backhauling decreases the retailer’s cost of

ordering local produce and thus increases her average margin. The higher the fraction of produce

the retailer sources from the local farmer, the higher her average margin. With backhauling, the

retailer may actually incur higher mismatch cost by incorporating more uncertain local supply, but

the increased mismatch cost is more than offset by higher average margin. Backhauling thus increases

the quantity ordered from the local supplier, decreases local order volatility, increases local farm
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utilization, and increases retail profit.

We find, however, that if the retailer’s objective is to achieve high service level rather than maxi-

mizing profit, coordination and backhauling are ineffective at improving the operating conditions for

the local farmer. We investigate an order policy, which we call manager’s discretion, that is used by

Walmart to support local farms. Under the manager’s discretion order policy, the retailer commits

to buy everything the local farm produces. This clearly benefits the local farmer, but makes the

retailer worse off. Under this order policy, the retailer loses the demand visibility advantage of the

local farm’s short lead time. Moreover, the retailer must incorporate local supply uncertainty into

its safety stock when she orders from the mainstream supplier. Thus, retail profit decreases under

manager’s discretion. However, we show that if manager’s discretion is combined with backhauling, if

the unit ordering cost under backhauling is sufficiently low, the retailer can increase profit by sourcing

locally and guarantee orders to the local farm. This is, in fact, the combination used by Walmart in

its Heritage Agriculture Program.

We also explore how the proximity of local food to the consumer can affect the environmental

impact of the food supply chain. The most direct application of our results is the effect on food miles.

Although it is imperfect, food miles is often used as a measure of environmental sustainability. Using

our results, the increase of local food as a percentage of the total supply can be quantified, and thus

can be translated into a decrease in average food miles. Moreover, our results can provide a more

nuanced interpretation of food miles by incorporating the effect of supply chain dynamics that change

total food miles and food miles per unit of food consumed.

Another potential operational advantage afforded by the proximity of local food is the possibility of

extending the shelf life of local food. If handled properly (i.e., if the produce enters the cold chain in a

timely manner), produce from local farms can be harvested so that it has longer shelf life than produce

from mainstream farms. Essentially, a portion of the transport time can be shifted to extend produce

shelf life. This gives the retailer more opportunities to sell the produce and more flexibility in its order

policy. We derive two heuristics for the retailer’s order policy when local produce has extended shelf

life. We show that appropriate handling to extend the shelf life of local food can increase the retailer’s

profit, improve the operating conditions for the local farm, and can also benefit the environment by

reducing retail food waste.
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Literature Review Our paper uses an operational lens to examine the viability of local food, a

topic that has been studied in the food policy and agricultural economics literature (Abatekassa and

Peterson (2011), Lerman (2012) provide overviews). Most of the extant work uses qualitative research

methods, e.g., case studies, surveys, interviews to understand the factors that affect the viability of

local food supply chains. King et al. (2011) provide an overview of issues involved in expanding the

presence of local food, including distribution, packing, supply availability, and transportation. In a

survey study by Heer and Mann (2010), they find that including different vertical players in the food

supply chain is a critical factor for successful local food networks in Germany. A USDA report describes

a number of cases studies that compare characteristics of local and mainstream food supply chains for

apples, blueberries, leafy greens, beef, and milk (King et al. 2010). In a quantitative study, Nicholson

et al. (2011) use a spatially-disaggregated transshipment model to determine the additional supply

chain costs required for transportation and processing of dairy products if supply was localized. Our

research complements this literature by explicitly analyzing how supply chain dynamics (i.e., inventory

management decisions) change when local food is introduced as a sourcing option.

Our work builds on inventory theory; see Zipkin (2000) and Porteus (2002). In particular, it relates

to the stream of literature that incorporates forecast updating into inventory control decisions, because

the retailer can update her demand forecast between her ordering decisions from the mainstream and

local farms. One important trade-off studied in this literature is between the improved demand forecast

and the increased cost of ordering as one waits to acquire more information. Wang et al. (2012) studies

this tradeoff and provides an overview of this literature; also see Ozer et al. (2007). This trade-off

does not exist in our setting, because the local produce is not sold at a premium. In contrast, the

key tension in our model is between improving the retailer’s demand forecast and ensuring adequate

supply, an issue that arises because the local supply is capacitated.

Another key aspect of our formulation is the perishability of fresh produce. Nahmias (2011)

provides an overview of the perishable inventory literature; also see Karaesmen et al. (2011). This

literature focuses primarily on dynamic models, which relate to our model of the extended shelf life of

local produce (see Section 6). Characterization of the state-dependent optimal ordering policy for the

two-period shelf life problem is provided by Nahmias and Pierskalla (1973) and Cohen (1976), both

of which assume backlogging of unmet demand, and by Nahmias (1975) with a lost sales assumption.

5



These characterizations are implicit and their implementation using dynamic programming is difficult.

We provide two simple heuristics to find the optimal ordering policy for the extended shelf life scenario.

These heuristics do reasonably well in conveying the potential benefits of the longer shelf life to the

retailer and the local farmer.

Lastly, our work relates to the literature on dual sourcing; see for example Johnson (2007), Veer-

araghavan and Scheller-Wolf (2008) and Zhang et al. (2012). In dual sourcing, there is typically a

low-cost, long leadtime supplier and a high-cost, short leadtime (responsive) supplier. The key notion

in the dual sourcing literature is to source the base demand from the low-cost supplier, and source the

excess demand from the expensive yet responsive supplier. The underlying tradeoff is different in our

model than that in the dual sourcing literature, because the ordering cost is the same for both the

local and mainstream suppliers. To be more specific, if the local farm were not capacity constrained,

the retailer would only order from the local (responsive) supplier. Hence, the key tension in our model

is due to the capacity constraint of the local supplier.

The paper is organized as follows. We present the model in Section 2. In Section 3 we derive

the retailer’s profit-maximizing order policy and show how coordination, backhauling, and manager’s

discretion affect the order policy and the operating conditions for the local farm. In Section 4, we

derive the retailer’s optimal order policy when her objective is to achieve a certain service level. We

present a numerical example in Section 5. We discuss the environmental impact of the local food

model in Section 6 and conclude in Section 7.

2 Model

At the most basic level, the fresh produce supply chain works like many others: the farmer (manufac-

turer) grows the produce, the retailer buys the produce from the farmer and sells it to the consumer.

However, fresh produce is highly perishable, thus, we model the retailer’s procurement strategy of a

single fresh produce item which has a shelf life of one period.

We consider an infinite horizon problem assuming supply and demand are stationary. The retailer

can supply its demand from a local farm or from a distant mainstream farm. We assume the lead

time from the mainstream farm is two periods, and one period from the local farm. Adopting the
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terminology of Zipkin (2000), the timing of events is as follows. Define time t as the start of period t.

To satisfy the demand in period t, the retailer orders ym from the mainstream farm at time t− 1 and

orders yl from the local farm at time t (see Figure 1). Thus, y = yl + ym is the total amount ordered

by the retailer to satisfy demand in period t.

Note that in order to have produce ready for sale in period t both the mainstream and local farms

must plant crops months before period t. Therefore, the capacities of both sources are committed long

before retail orders are received. The mainstream farm represents a supply source from a specialized

agricultural region such as Florida, which produces more than two thirds of the tomatoes in the United

States. Thus, we assume that the mainstream supplier is arbitrarily large and has enough capacity to

satisfy any order from the retailer. Local farms that are close to urban areas are typically constrained

by arable land availability (due to land development). For example, in a study of New York State,

Peters et al. (2009) show that only 34% of the required food intake by New York residents can be

supplied by local sources. Thus, we assume the local farm is capacity constrained. Moreover, local

supply in each period is uncertain because the retailer lacks visibility on local supply or harvest yield

is unpredictable. At time t− 1, when the retailer orders from the mainstream farm, the local supply

is uncertain. We model the local supply availability as µ + εs, where µ is the mean supply and εs is

a normal, mean-zero random variable with variance σ2s . Local supply uncertainty is resolved prior to

ordering from the local farm. We use ε̃s to denote a realization of εs.

Because excess inventory perishes, it does not carry over from period t to period t+ 1. Therefore,

the retailer starts each period with zero inventory and the quantity received at the beginning of each

period is what is available for sale in that period. The resulting sales is the minimum of the demand

and the inventory on-hand. We denote unit ordering cost and sales revenue for the retailer as w and

r, respectively. These are the same for produce sourced from local and mainstream farms. Excess

demand is lost. This infinite-horizon problem decomposes into a series of independent one-period

problems.

Because the leadtime for ordering from the mainstream farm is longer than that from the local

farm, the retailer faces higher demand uncertainty at the point she orders from the mainstream farm.

We model demand uncertainty as follows. When ordering from the mainstream farm, the retailer’s

demand forecast is λ + ε1 + ε2, where λ is the mean demand, and ε1 and ε2 are normal, mean-zero
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period t-1 

time t-1 

period t 

time t 

order ym(t-1) from mainstream 
farm for arrival in period t 

order yl(t) from local farms 
for arrival in period t 

The retailer updates her demand forecast 
and resolves local supply uncertainty. 

Demand is observed. 

Figure 1: Timing of events.

random variables with variances given by σ21 and σ22, respectively. Prior to ordering from the local

farm at time t, the retailer updates her demand forecast as follows: λ + ε̃1 + ε2, where ε̃1 denotes a

realization of ε1.

3 The Retailer’s Profit-Maximizing Order Policy

In this section, we derive the optimal order policy of the retailer when her objective is to maximize

profit. We will consider two sourcing policies. We first consider the straightforward case where

the retailer only orders from one supplier, the mainstream farm (since the local farm does not have

enough capacity to be the sole supplier). We call this the mainstream only sourcing policy. Then

we will consider the hybrid sourcing policy, where the retailer sources from both the mainstream and

local farms.

Under the mainstream only policy, maximizing profit is equivalent to minimizing the expected one

period overage and underage costs. Thus, the retailer solves the following problem:

min
y≥0

wEε1,ε2 [(y − λ− ε1 − ε2)+] + (r − w)Eε1,ε2 [(ε1 + ε2 + λ− y)+]. (1)

This problem is a straightforward application of the newsvendor problem. The retailer’s profit-

maximizing order quantity is given by the following lemma.

Lemma 1 Using the mainstream only sourcing policy, the retailer’s profit-maximizing order quantity
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is

y∗ = λ+
√
σ21 + σ22 Φ−1

(r − w
r

)
, (2)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution.

If the retailer can choose to also source from the local farm (hybrid sourcing), she can do at least as

well as when she sources only from the mainstream farm. Using backwards induction, we first consider

the problem of how much to order from the local farm having ordered ym from the mainstream farm.

To minimize the expected one period cost of underage and overage, the retailer solves the following

problem at time t

min
y≥ym

wEε2 [(y − λ− ε̃1 − ε2)+] + (r − w)Eε2 [(λ+ ε̃1 + ε2 − y)+]. (3)

If we ignore the bound on y, this also is a typical newsvendor problem. The retailer’s commitment

to receive ym units in period t from the mainstream farm constrains the newsvendor solution. That

is, if the newsvendor solution is smaller than ym for a particular period, the retailer does not order

any produce from the local farm. The following proposition provides the optimal profit-maximizing

quantity from the local farm, y∗l . Note that y∗l is the optimal order quantity, but the retailer actually

receives min{y∗l , µ+ ε̃s} from the local farm.

Proposition 1 The unconstrained objective in Equation (3) is minimized at ỹ = λ+ε̃1+σ2Φ
−1 ( r−w

r

)
.

Thus, the retailer’s profit-maximizing order quantity from the local farm is y∗l = (ỹ − y∗m)+, where y∗m

is the optimal order quantity from the mainstream farm and q+ = max(q, 0).

Next, we find the profit-maximizing order quantity from the mainstream farm, y∗m. In choosing y∗m,

the retailer includes the capacity limit of the local farm in the optimization problem by constraining

y from above by ym + µ+ εs and solves the following for optimal y∗m:

min
ym≥0

Eε1,εs
[

min
ym+µ+εs≥y≥ym

wEε2 [(y − λ− ε1 − ε2)+] + (r − w)Eε2 [(λ+ ε1 + ε2 − y)+]

]
. (4)

The minimization between the square brackets in Equation (4) is the retailer’s cost of overage plus

cost of underage with the expectation taken over ε2, the random component left at time t. The outer

expectation is taken over εs and ε1, both random at time t − 1. The following proposition offers a

characterization of the optimal y∗m.
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Proposition 2 The optimal order quantity from the mainstream farm y∗m solves the following:∫ (ym−σ2z∗−λ)/σ1

−∞

[
1− r

r − w
Φ
(ym − λ− uσ1

σ2

)]
φ(u)du

+Φ
(−µ
σs

) ∫ ∞
(ym−σ2z∗−λ)/σ1

[
1− r

r − w
Φ
(ym − λ− uσ1

σ2

)]
φ(u)du

+

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

[
1− r

r − w
Φ
(ym + µ+ vσs − λ− uσ1

σ2

)]
φ(u)duφ(v)dv = 0, (5)

where z∗ = Φ−1
(
r−w
r

)
.

From Proposition 2, we see that the profit-maximizing mainstream order y∗m is determined by the

model primitives. Thus, for any given set of parameters, y∗m is fixed. However, Proposition 1 shows

that the local order y∗l depends on the realization of ε1. Thus, a major implication of these results is

that the retailer’s profit-maximizing order strategy is to use local supply to react to demand volatility.

By waiting to order from the local farm, the retailer sees a more accurate demand signal, and can adjust

her order accordingly. The retailer essentially uses the local farm to capture demand upside. Thus,

compared to when she follows the mainstream only sourcing policy, the retailer’s average mismatch

cost (overage + underage) decreases if she also sources from the local farm (hybrid sourcing).

However, the retailer’s optimal order policy makes operating conditions very difficult at the local

farm. The local farm sees a volatile order pattern – the local supply is used only when demand is

higher than expected. The retailer reduces her risk of overstocking, but that burden is shifted to the

local farmer because the farmer made the decision to plant months ago. The distance and resulting

leadtime asymmetry causes the local food paradox : Shorter leadtime is what makes sourcing from

local farms appealing to the retailer, but it is also what places local farmers at a disadvantage. The

shorter leadtime of the local farm induces the retailer to use local sourcing as a mechanism to reduce

overstocking by delaying the ordering of a portion of the supply to when demand is more certain.

3.1 Mechanisms that Improve Local Farm Operating Conditions

We now examine three mechanisms used in practice that can mitigate the adverse effects of the retailer’s

ordering strategy on the local farm: coordination, backhauling, and a retail store order policy which

we will call “manager’s discretion”. In particular, we examine how these mechanisms increase the

average amount sold by the local farm (thus better utilizing the capacity of the local farm), and how

10



this affects the profit of the retailer. We derive analytical results in this section and in Section 5, we

use these results in a numerical example to show the magnitude of the impact of each mechanism.

Coordination. The Red Tomato organization (redtomato.org, Alvarez et al. (2010)) acts as an

intermediary between local farmers and retailers. Red Tomato facilitates communication between the

retailer and local farms. In particular, sharing long-term forecasts enables farms to plant what the

retailer anticipates selling. By coordinating the growing plan of local farms, it appears to the retailer

that the local supply capacity increases. Moreover, by aggregating several farms, the pooling effect

lowers the volatility of local supply. Local supply uncertainty can also be improved by communicating

with the retailer what the local supply is several weeks before harvest, e.g., at time t− 1.

The following two propositions show how increasing local capacity and decreasing local supply

uncertainty affect the local farmer and the retailer.

Proposition 3 As average local production capacity µ increases,

1. the average amount the retailer orders from the local farm increases,

2. the average amount sold by the local farm increases,

3. the retailer’s expected one period cost decreases.

Proposition 4 As local supply uncertainty σs decreases,

1. the average amount the retailer orders from the local farm increases,

2. the average amount sold by the local farm increases,

3. the retailer’s optimal expected one period cost decreases.

By increasing local supply and decreasing local supply uncertainty, the retailer is able to manage

her mismatch cost more effectively. Recall that the retailer uses the local farm to react to demand

volatility. With a larger, more reliable local supply source, the retailer can delay a bigger portion of

her order (i.e., order less from the mainstream supplier). Since a bigger portion of the retailer’s order

is delayed until the local order, the probability that demand materializes increases. Thus, the amount

the retailer orders from the local farm increases. Since local supply is more reliable, the probability
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that the local farm can fill the order increases. At the same time, the retailer has better demand

visibility on a bigger portion of her order so she can manage mismatch costs better.

Propositions 3 and 4 show that the Red Tomato model can benefit both the retailer and local

farmer. As the amount of local supply increases or the local supply uncertainty decreases, the retailer

purchases more from the local farm. Moreover, our numerical analysis in Section 5 shows that the local

farmer sees a more stable order pattern from the retailer. The predictability afforded by increased

supply and higher order stability lowers the overall risk for the local farmer and allows him to better

manage staffing (pick and pack lines) and transportation. In essence, through coordination and forecast

visibility, an organization such as Red Tomato can pool the resources from multiple local farms, making

them appear like a large, reliable and hence more attractive supplier to the retailer.

Backhauling. An operational lever that could reduce the logistical cost of sourcing from the local

farm is backhauling. For example, Walmart’s local food program (Heritage Agriculture) leverages its

ability to backhaul local produce from farms that are located between its distribution centers (DC’s)

and stores. The retailer regularly sends loaded trucks from her DC’s to her stores. On the way back

from the stores, the trucks are empty. Using this truck capacity to transport produce from farms to

the DC significantly reduces the logistics cost of sourcing from the local farm.

Let b be the reduced unit ordering cost under backhauling from the local farm. At time t− 1, the

retailer solves the following optimization problem to determine the optimal quantity to order from the

mainstream farm, ym:

min
ym≥0

(w− b) ym + Eε1,εs
[

min
ym+µ+εs≥y≥ym

bEε2 [(y − λ− ε1 − ε2)+] + (r− b)Eε2 [(λ+ ε1 + ε2 − y)+]

]
. (6)

Equation (6) is analogous to Equation (4), except that in the inner minimization, the retailer’s unit

ordering cost is b instead of w. There is also an additional (w − b) ym term in the outer minimization

which accounts for the additional cost of the units ordered from the mainstream farm.

The following proposition presents the retailer’s profit-maximizing order quantity from the main-

stream farm.

Proposition 5 The retailer’s profit-maximizing order quantity from the mainstream farm y∗m solves
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the following(
w − b
w − r

)∫ ∞
−µ/σs

∫ (ym+µ+vσs−σ2z−λ)/σ1

(ym−σ2z−λ)/σ1
φ(u)duφ(v)dv∫ (ym−σ2z−λ)/σ1

−∞

[
1− r

r − w
Φ
(ym − λ− uσ1

σ2

)]
φ(u)du

+Φ
(−µ
σs

) ∫ ∞
(ym−σ2z−λ)/σ1

[
1− r

r − w
Φ
(ym − λ− uσ1

σ2

)]
φ(u)du

+

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z−λ)/σ1

[
1− r

r − w
Φ
(ym + µ+ vσs − λ− uσ1

σ2

)]
φ(u)duφ(v)dv = 0, (7)

where z = Φ−1
(
r−b
r

)
.

The retailer’s profit-maximizing local order is similar to what is presented in Proposition 1. The only

change is due to the reduction of the cost of sourcing from local farms from w to b.

Based on the mainstream order presented implicitly in Proposition 5, we can show the effect of

backhauling on the local farmer.

Proposition 6 As the unit ordering cost under backhauling b decreases,

1. the average amount the retailer orders from the local farm increases,

2. the profit-maximizing order quantity from the mainstream farm y∗m decreases,

3. the average amount sold by the local farm increases,

4. the retailer’s optimal expected one period cost decreases.

The backhauling mechanism works differently than coordination to improve conditions for the local

farmer. Instead of allowing the retailer to better manage mismatch cost, backhauling increases the

per unit margin of the retailer. Without backhauling, a local tomato is the same as a mainstream

tomato. With backhauling, the retailer’s margin on local tomatoes is higher. Therefore, the retailer

prefers to sell more local tomatoes. Thus, as shown in Proposition 6, she orders less from mainstream

and more from local. However, our numerical analysis in Section 5 shows that the retailer stocks out

more because there is local supply uncertainty. Therefore, with backhauling, the retailer’s mismatch

cost can actually increase, but her average margin on each unit sold increases, allowing her to increase

profit.
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Manager’s Discretion. Unlike coordination and backhauling, which are operational levers, man-

ager’s discretion is an order policy that the retailer can choose to follow in order to support local

farmers. A number of successful grocery chains have local sourcing policies, including Whole Foods,

Walmart, Wegmans, and Thrifty Foods. We consider an extreme case where the retailer exercises

manager’s discretion and commits to buy everything the local supplier produces. This is an agree-

ment that Walmart has with some farmers in its Heritage Agriculture Program. Although she buys

everything the local farm produces, the retailer must still order from the mainstream supplier because

she knows that there probably will not be enough local supply to satisfy demand. In this section, we

derive the impact of that policy on the retailer’s profit.

Taking into account the supply of local produce that will be available in period t, the retailer

orders the following from the mainstream farm:

Proposition 7 Using manager’s discretion, the retailer maximizes profit by ordering the following

quantity from the mainstream farm:

y∗m = λ− µ+
√
σ21 + σ22 + σ2S Φ−1

(r − w
r

)
. (8)

Inspection of Equation (8) shows that for the same service level outcome, i.e., r−wr , the retailer carries

more safety stock under manager’s discretion than under the mainstream only order policy (Lemma 1,

Equation (2)). This results in the following corollary.

Corollary 1 Using manager’s discretion, the retailer’s profit decreases compared to the mainstream

only or hybrid sourcing (without manager’s discretion) order policies.

By committing to buy whatever the local farm produces, the retailer loses the operational advantage

of deciding her local order based on a clearer demand signal. Moreover, she must account for local

supply uncertainty when she orders from the mainstream farm, thus increasing the amount of safety

stock she carries. Clearly, manager’s discretion is good for the local farmer (guaranteed sales), but

the retailer is worse off than even if she orders from mainstream only.
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4 Target Service Level

In the grocery retailing business, a more common objective is to maintain a certain service level rather

than to maximize profit. In particular, for staple produce items such as tomatoes or bananas, it is

important for the retailer to maintain high service levels because consumers have come to expect these

items to be in-stock. Therefore, in this section, we consider the problem where the retailer optimizes

her profit subject to a service level constraint. We focus on type 1 service level, the probability of

being in stock. The desired service level is denoted by ρ.

Using the mainstream only sourcing policy, the retailer’s optimal order can be obtained by

ŷ = λ+
√
σ21 + σ22 Φ−1

(
max

{
ρ,
r − w
r

})
. (9)

In the hybrid sourcing case, the retailer’s optimal order policy follows from a constrained optimization

problem. To state the retailer’s problem, let y = (ym, yl) denote her order policy with the understand-

ing that ym and yl are chosen sequentially. In particular, the local order quantity yl is chosen after

observing ε̃1 and ε̃s. Also denote the retailer’s cost under the order policy y by C(y):

C(y) = Eε1,εs,ε2
[
w(ym+min(yl, (µ+εs)

+)−λ−ε1−ε2)++(r−w) (λ+ε1+ε2−ym−min(yl, (µ+εs)
+))+

]
.

(10)

Similarly, denote the service level under order policy y by S(y):

S(y) = P
(
λ+ ε1 + ε2 ≤ ym + min(yl, (µ+ εs)

+)
)
. (11)

Then the retailer’s problem is to choose y (with ym, yl ≥ 0) so as to

Min C(y) subject to S(y) ≥ ρ. (12)

To solve this problem, we consider the following relaxed problem in which the constraint is replaced

by a penalty term in the objective: For q > 0, choose y to

Min C(y)− q S(y). (13)

Letting2 y(q) = argmin{C(y) − q S(y)}, the following lemma shows that higher penalties lead to

2It is straightforward to argue that the objective is strictly convex, and hence, the optimal solution is unique, and
that y(q) is well defined.
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higher service levels.

Lemma 2 As q increases, S(y(q)) increases too.

To facilitate the solution to the retailer’s problem (12), define

ρ = S(y(0)) and ρ = lim
q→∞

S(y(q)). (14)

Then for ρ ∈ (ρ, ρ), let q(ρ) be such that3 S(y(q(ρ))) = ρ. The following proposition provides a

solution to the retailer’s problem (12).

Proposition 8 The order policy y(q(ρ)) is an optimal solution for (12) and constitutes an optimal

order policy for the retailer.

Next, we characterize the optimal order quantity y(q(ρ)) further. Note that the probability S(y) of

being in stock can be written as follows:

S(y) = Eε1,εs
[
P
(
λ+ ε1 + ε2 ≤ ym + min(yl, (µ+ εs)

+)
)]

= Eε1,εs
[
Φ
(min(yl, (µ+ εs)

+) + ym − λ− ε1
σ2

)]
. (15)

The formulation (13) can be rewritten as follows:

min
ym≥0

Eε1,εs
[

min
µ+εs≥yl≥0

wEε2 [(ym + yl − λ− ε1 − ε2)+] + (r − w)Eε2 [(λ+ ε1 + ε2 − ym − yl)+]

− qΦ
(yl + ym − λ− ε1

σ2

)]
. (16)

Then we consider the inner optimization (or, the second period) problem given ym, ε̃s, ε̃1:

min
µ+ε̃s≥yl≥0

wEε2 [(ym + yl − λ− ε̃1 − ε2)+] + (r − w)Eε2 [(λ+ ε̃1 + ε2 − ym − yl)+]

− qΦ
(yl + ym − λ− ε̃1

σ2

)
. (17)

Let z(q) denote the unique solution of the following equation:

r − w
r

= Φ(z)− q

σ2r
φ(z). (18)

The following proposition characterizes the optimal solution to (17).

3It is clear from Lemma 2 that S(y(·)) is invertible and that q(ρ) is well defined.
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Proposition 9 Let y = λ+ ε̃1 + σ2z(q(ρ)). Then the retailer’s profit maximizing order quantity from

the local farm is yl = (y − ym)+.

Note that the unconstrained order quantity y = λ + ε̃1 + σ2z(q(ρ)) can be interpreted as the order

quantity in a simple newsvendor setting with the optimal service level ρ̂:

y = λ+ ε̃1 + σ2Φ
−1(ρ̂), (19)

where ρ̂ = Φ(z(q(ρ))). Therefore, when ordering from the local farmer the retailer strives to achieve a

service level ρ̂, which does not depend on the realizations of ε1 and εs (though the quantity delivered

from the local farm depends on both). This observation simplifies the numerical solution of the

retailer’s problem (12). Namely, it suffices to search over ym and ρ̂. For each such pair, one computes

the cost C(y) and the service level S(y). Then restricting attention to those pairs (ym, ρ̂) such that

S(y) = ρ, the pair with the lowest cost gives the optimal order policy for the retailer.

Lastly, observe that whenever the service level constraint binds, i.e., q > 0, ρ̂ > (r − w)/r, which

follows from (18). This merely means that the retailer seeks to achieve a service level higher than

the optimal service level in the simple newsvendor model. Interestingly, we also observe that ρ̂ > ρ.

Otherwise, if ρ̂ ≤ ρ, because of the capacity constraint and the resulting truncation of local orders,

we would have S(y) < ρ, violating the service level constraint. In other words, recognizing the local

capacity constraint, the retailer seeks a higher service level ρ̂ in the second stage problem than the

required service level ρ. This enables her to achieve the service level ρ on average.

In Section 5, we apply these findings in a numerical example to show how coordination and back-

hauling affect retail profit and local farm operating conditions when the retailer’s objective is to achieve

a target service level. If the retailer implements hybrid sourcing with the manager’s discretion order

policy, following the same logic as the mainstream only optimal quantity in Equation (9), she orders

the following quantity from the mainstream farm:

ŷm = λ− µ+
√
σ21 + σ22 + σ2s Φ−1

(
max

{
ρ,
r − w
r

})
. (20)

Comparing Equations (9) and (20), we see that as in Section 3 (profit-maximization), the retailer

carries more safety stock when she implements manager’s discretion, and as a result her profit using

hybrid sourcing with manager’s discretion is lower than her profit when she sources from mainstream
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only.

Combining manager’s discretion and an operational mechanism. The manager’s discretion

order policy is clearly the most effective mechanism for improving local farm operating conditions,

however, it comes at the expense of retail profit. The question is whether combining manager’s

discretion and an operational mechanism (coordination or backhauling) can guarantee local farm

order stability and increase retail profit above the mainstream only policy?

The combination of manager’s discretion with coordination will at best increase the retailer’s

profit to the same level as sourcing from mainstream only. This is because under manager’s discretion,

coordination can only reduce supply uncertainty - demand visibility is irrelevant because the retailer

has already committed to buying everything from the local farm. Thus, coordination can at best make

local supply deterministic, which makes local supply simply an extension of the mainstream supply.

However, if backhauling were possible and it reduced the ordering cost of local produce enough, the

retailer could more than compensate for the profit decrease resulting from committing to the manager’s

discretion order policy.

Proposition 10 Suppose the retailer’s objective is to achieve service level ρ and she implements

manager’s discretion. The retailer’s profit increases as the unit ordering cost under backhauling b

decreases. If backhauling reduces the unit ordering cost enough, the retailer’s profit is higher than her

profit under mainstream only and under hybrid sourcing.

Implementing manager’s discretion with low enough ordering cost under backhauling makes sourc-

ing locally not only viable, but more profitable than sourcing from mainstream only. Backhauling

and manager’s discretion are complementary mechanisms: backhauling reduces the cost of local food

and manager’s discretion increases the percentage of local food purchased by the retailer. Thus, as

ordering cost decreases, the retailer’s average margin increases. This is the winning combination used

by Walmart in its Heritage Agriculture program.
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profit maximization target service level 0.99

mainstream hybrid mainstream hybrid
only sourcing only sourcing

mainstream order, y∗m 1983 1898 2465 2336
avg local order – 120 – 47
avg retail service level 0.46 0.47 0.99 0.99
avg retail profit ($) 1281.12 1307.60 1026.80 1100.05
avg retail mismatch cost ($) 118.88 92.40 373.20 299.95
avg retail overage cost ($) 57.16 43.85 372.74 299.46
avg retail underage cost ($) 61.73 48.54 0.46 0.49
avg local farm utilization – 0.49 – 0.24
coeff. var. local farm util – 0.85 – 1.53
avg local farm service level – 0.72 – 0.90

Table 1: Retail performance and local farm operating conditions under mainstream only and hybrid
sourcing policies when the retailer’s objective is to maximize profit or target service level of 0.99.

5 Numerical Example

We now use the analytical results derived in Sections 3 and 4 in a numerical example to illustrate

the magnitude of the local food paradox and the impact of coordination, backhauling, and manager’s

discretion. We consider the example of stocking tomatoes at a retail grocery store, using parameter

values that are consistent with an average suburban retail store. The average weekly demand for

tomatoes is λ = 2000 pounds, and the uncertainty around the demand is captured in ε1 ∼ N(0, 160)

and ε2 ∼ N(0, 120). We assume that the local supply is approximately 10% of demand, 200 pounds

per week, but there is uncertainty that is captured by εs ∼ N(0, 100). The retail price of tomatoes

is $1.50 per pound and the retailer’s unit cost is $0.80 per pound. The numerical results presented

below are obtained using our analytical derivations for the retailer’s mainstream and local orders, and

monte carlo simulations for the outcome variables.

We first compare the results for the mainstream only and hybrid sourcing policies under the

two objective functions, profit maximization and target service level (for high service level of 0.99).

Looking at the two left columns of results for profit maximization in Table 1, we see that by using

hybrid sourcing, the retailer increases profit by reducing her mismatch costs (mainstream only: profit

= $1281.12 and mismatch cost = $118.88, hybrid sourcing: profit = $1307.60 and mismatch cost =

$92.40). She is able to match demand better (lower mismatch cost) because the reduced leadtime of the
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local supplier enables better demand visibility. However, notice that the average local farm utilization

is only 0.49, moreover, the coefficient of variation (CV) of utilization is 0.85. This is the manifestation

of the local food paradox: the retailer uses the local supplier to react to demand volatility and as the

result, the local farm sees a volatile order pattern. The local farm’s utilization is low because he only

receives orders when there is a higher than expected demand.

The effects of the local food paradox are exacerbated if the retailer’s objective is to achieve a high

service level (see Table 1, right two columns for service level objective). Because the retailer’s objective

is to achieve a high service level, she relies much more on the higher capacity, more reliable mainstream

farm (profit maximization: y∗m = 1898, target service level: y∗m = 2336). The resulting average local

order under hybrid sourcing decreases to 47 units from 120 units under profit maximization, and the

coefficient of variation increases to 1.53 from 0.86. To achieve a service level of 0.99, the retailer

incurs high overage cost (approximately $300 compared to $44 under profit maximization) and almost

no underage cost (less than $1), therefore, the impact of hybrid sourcing is primarily to reduce the

retailer’s overage cost. Basically, the local farm is used for the few unlikely occasions when demand is

extremely high.

We now examine how coordination, backhauling, and manager’s discretion affect the retailer’s profit

and the local farm’s operating conditions. We will focus on the case where the retailer’s objective is

to achieve a high service level of 0.99. This is to be consistent with what we have observed in practice:

that retail grocers strive for high service level because consumers have come to expect it.

Coordination. Table 2 shows the impact of coordinating multiple local farms. As the number of

farms increases, local supply capacity increases from 200 units (1 farm) to 2000 units (10 farms) and

the coefficient of variation of local supply decreases from 0.5 (1 farm) to 0.16 (10 farms). The good

news is that coordination makes the retailer and the local farm better off. Retail profit increases from

$1100.06 (1 farm) to $1176.05 (10 farms), local farm utilization increases from 0.23 (1 farm) to 0.28

(10 farms), and the coefficient of variation of local farm utilization decreases from 1.53 (1 farm) to

0.35 (10 farms).

The bad news is that local farm utilization remains quite low, even when average local supply is

equal to average demand. This is the persistence of the local food paradox. As local supply capacity
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target service level 0.99

local supply capacity (µ, σS)
1 farm 2 farms 3 farms 5 farms 10 farms

(200, 100) (400, 141) (600, 173) (1000, 224) (2000, 316)

mainstream order, y∗m 2336 2228 2136 1986 1740
avg local order 47 100 164 296 539
avg retail service level 0.99 0.99 0.99 0.99 0.99
avg retail profit ($) 1100.06 1140.65 1161.22 1173.97 1176.05
avg retail mismatch cost ($) 299.94 259.35 238.78 226.03 223.95
avg retail overage cost ($) 299.49 258.93 238.41 225.72 223.66
avg retail underage cost ($) 0.45 0.42 0.37 0.31 0.28
avg local farm utilization 0.23 0.27 0.29 0.31 0.28
coeff. var. local farm util 1.53 1.15 0.89 0.60 0.35
avg local farm service level 0.90 0.94 0.97 0.99 1.00

Table 2: The impact of coordinating multiple local farms on retail performance and local farm operating
conditions.

increases and local supply uncertainty decreases, the distinction between local and mainstream supplies

boils down to leadtime. The retailer will take advantage of the short local leadtime by using local

supply to react to demand volatility. For each additional local unit, the benefit to the retailer decreases

because the demand uncertainty associated with each additional local unit decreases. However, the

supply uncertainty increases for each additional unit. Therefore, there is a threshold local quantity

where the retailer’s benefit from sourcing local is outweighed by the cost. When the retailer’s objective

is to achieve a high service level, this threshold quantity is even lower because the retailer faces the

addition constraint that the local supply uncertainty be low enough to achieve the target service level.

Thus, coordination helps to improve the operating conditions for the local farm, but the impact is

limited.

Backhauling. Implementing backhauling when the retailer’s objective is to achieve service level

0.99 is more helpful to the local farmer than coordination. In Table 3, we see that with backhauling,

utilization increases from 0.24 to 0.41. However, the retailer cannot rely on the local farmer as much

as it would like because local supply uncertainty would prevent the retailer from achieving its target

service level, thus local farm utilization remains low.

In contrast, when the retailer maximizes profit, backhauling increases local farm utilization to a

very high level. In Table 3 (bottom half), as unit ordering cost under backhauling decreases, local
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target service level 0.99
backhaul cost no backhaul b= $0.7 b= $0.5 b= $0.3 b= $0.1

mainstream order, y∗m 2336 2333 2325 2322 2317
avg local order 47 50 61 69 95
avg retail profit ($) 1100.05 1102.17 1105.97 1114.15 1123.13
avg retail mismatch cost ($) 299.95 301.38 306.83 309.33 320.02
avg local farm utilization 0.24 0.25 0.29 0.32 0.41
coeff. var. local farm util 1.53 1.48 1.31 1.23 1.00

profit maximization
backhaul cost no backhaul b= $0.7 b= $0.5 b= $0.3 b= $0.1

mainstream order, y∗m 1898 1875 1832 1802 1785
avg local order 120 153 226 301 395
avg retail service level 0.47 0.47 0.47 0.47 0.47
avg retail profit 1307.60 1317.18 1342.13 1372.99 1408.28
avg retail mismatch cost 92.40 93.71 100.93 111.32 122.48
avg local farm utilization 0.48 0.59 0.75 0.87 0.95
coeff. var. local farm util 0.86 0.70 0.46 0.31 0.17

Table 3: The impact of backhauling on retail performance and local farm operating conditions.

farm utilization increases considerably (from 0.48 to 0.95) and the coefficient of variation decreases

considerably (from 0.86 to 0.17). The retailer also benefits from backhauling – her profit increases

as unit ordering cost under backhauling b decreases, however, note that the retailer’s mismatch cost

increases as backhaul cost decreases. The backhaul mechanism works through the retailer’s margin,

which in turn affects her profit. Thus as the margin increases (i.e., the unit ordering cost b decreases),

the retailer uses a higher fraction of local supply to fill demand. Increased margin means that the

retailer carries more safety stock, therefore, overage cost increases. Local supply is also uncertain so

underage cost increases. Thus, overall mismatch cost increases. Although profit maximization is not

an appropriate objective for staple produce items, these insights can be applicable for specialty produce

items (e.g., eggplant, pomegranate). Maintaining a high service level may not be necessary and thus

the objective of the retailer’s stocking policy could be more closely aligned with profit maximization.

Manager’s discretion. By definition, manager’s discretion increases the local farm’s utilization to

1 and completely eliminates order volatility. This clearly benefits the local farmer, but retail profit

decreases considerably. A retailer who follows the manager’s discretion order policy while striving to

achieve service level 0.99 will decrease profit to $982.06. The retail profit under mainstream only and
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target service level 0.99
manager’s discretion no yes yes yes yes yes
backhauling no no b= $0.7 b= $0.5 b= $0.3 b= $0.1

mainstream order, y∗m 2336 2320 2320 2320 2320 2320
avg local order 47 201 201 201 201 201
avg retail profit ($) 1100.05 982.06 1002.15 1042.32 1082.49 1122.66
avg retail revenue ($) 2999.04 2998.89 2998.89 2998.89 2998.89 2998.89
avg retail cost ($) 1898.98 2016.83 1996.74 1956.57 1916.40 1876.24
avg retail mismatch cost ($) 299.94 417.94 413.50 404.63 395.77 386.90

Table 4: The impact of backhauling and manager’s discretion combination on retail performance.

hybrid sourcing without manager’s discretion are $1026.80 and $1100.05, respectively. This decrease

in profit results from an increase in mismatch cost to $417.94 (vs. $373.20 for mainstream only and

$299.94 for hybrid sourcing without manager’s discretion).

Combining manager’s discretion and backhauling. Table 4 shows that as the unit ordering

cost under backhauling b decreases, the retailer can actually make more profit than sourcing from

mainstream only. In fact, manager’s discretion with backhauling can result in higher profit than

even hybrid sourcing without manager’s discretion and backhauling. In this scenario, the fact that

backhauling only affects retail profit, not optimal order quantities, is advantageous.

6 Impact on the Environment: Food Miles and Food Waste

In this section, we explore two ways the proximity of local food to the consumer can affect environ-

mental sustainability. An obvious area is the impact on food miles. Conceptualized by Tim Lang, food

miles is the distance that food is transported from the time of production to consumption (Paxton

1994, Pirog and Benjamin 2005) – lower food miles is presumed to be better for the environment.

Food miles has been criticized as being too simple to capture the complexities of environmental sus-

tainability. For example, Weber and Matthews (2008) show that transportation contributes only 11%

of life-cycle greenhouse gas emissions, with the majority coming from the production of food. Oth-

ers argue for a more holistic assessment of the food supply chain that includes factors such as the

livelihood of farmers in developing countries (Chi et al. 2009, Coley et al. 2009). Nevertheless, food

miles remains a popular metric for environmental sustainability, primarily because of its simplicity
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and accessibility.

As mentioned in the introduction, we do not take a position on whether local food is better along

any dimension. What our model does is quantify the increase in the percentage of produce sourced

locally as a result of the hybrid sourcing policy, and coordination, backhauling, and manager’s discre-

tion mechanisms. The first-order effect on food miles is simply that hybrid sourcing lowers average

food miles of a produce item by incorporating a local supplier. Moreover, coordination, backhauling,

and manager’s discretion all increase the percentage of local food, further reducing the average food

miles. However, what our analysis also shows is that the total amount of produce ordered changes,

thus changing total food miles. We can also show the expected sales to the consumer. Therefore, a

metric such as the average food mile per unit of produce consumed could be calculated. Thus, our

results can add more nuance to the food miles metric by incorporating supply chain dynamics.

Extended Shelf Life. Another potential environmental benefit of local food is the reduction of

food waste at the retailer. Because local food spends less time in transport, if handled correctly (i.e.,

proper and timely refrigeration), the available shelf life of local fresh produce could be longer than

mainstream fresh produce. We develop two order heuristics for the retailer and show that leveraging

extended shelf life of local food can reduce retail waste, increase retail profit, and improve local farm

operating conditions. We continue with the setting introduced in Section 2, however, we assume that

the shelf life of local produce is two periods. Based on common retail grocery operating practices, we

assume that the produce is sold on a first-in-first-out basis.

The combination of perishability, different leadtimes and shelf lives for local and mainstream

fresh produce, and the local supplier capacity constraint make the exact analysis of the extended

shelf life scenario intractable. Therefore, in what follows we will make several simplifications and

approximations to motivate heuristic solutions for the retail order policy. First, defining x(t) as the

on-hand inventory at time t prior to ordering from the local farm, we assume for simplicity that

x(t) ≤ D(t) for all t. This merely ensures that demand is high enough to avoid any wastage of

produce. Second, we assume that the local farmer is uncapacitated. Under this assumption, without

loss of optimality, the retailer orders only from the local farmer. Therefore, in essence, the problem

reduces to a single echelon inventory problem with a single non-perishable product ordered from an
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uncapacitated supplier under lost sales. The lost sales penalty is p > 0 per unit, and the holding cost

rate is h > 0.

Denote the retailer’s demand forecast for period t when ordering from the mainstream farm by

D(t). Letting D̃(t) denote the demand forecast (conditional expectation of D(t)) at time t, i.e.,

D̃(t) = λ + ε̃1 + ε2, the on-hand inventory at time t + 1 before ordering from the local farm is given

by x(t+ 1) = [y(t)− D̃(t)]+, where y(t) is the inventory in period t after the shipment from the local

farm arrives but before the demand is realized.

An order policy of the retailer for the entire planning horizon is denoted by π. At the start of

period t, the retailer chooses the amount to order from the local farm, y(t) − x(t), to minimize total

expected discounted costs under policy π at time t, given by

Ct(x|π) =
∞∑
t=0

αt E
[
w(y(t)− x(t)) + L(y(t))|x(t)

]
, (21)

where the expectation is over all possible demand sequences, α is the discount factor and L(y) =

pEε2 [ (D̃ − y)+] + hEε2 [(y − D̃)+] is the mismatch cost. A straightforward manipulation of (21)

(provided in Appendix C) yields

Ct(x|π) = −wx(t) +

∞∑
t=0

αtE[L+(y(t))], (22)

where L+(y) = L(y) + wy − αwEε2 [(y − D̃)+]. Then, it follows from the analysis of Section 3.3 of

Heyman and Sobel (2004) that a myopic policy is optimal (see also pp. 374–387 of Zipkin (2000) for an

alternative derivation). Moreover, the cost function L+(y) serves as the current period’s cost. Then,

defining y+ = inf argminy E[L+(y)], the optimal ordering policy from the local farm is a base-stock

policy with the base-stock level of ỹ = y+ provided y(t) ≥ x(t). The base-stock level4 is characterized

in Section 9.4.6 of Zipkin (2000) as ỹ = λ+ ε̃1 + σ2Φ
−1( p−w

p+h−αw
)
.

Motivated by this characterization, we develop two heuristics, both of which use a base-stock policy

when ordering from the local farm. The base-stock level is given by ỹ = ŷ + ε̃1, where ŷ is a constant

term to be determined and ε̃1 is the forecast update prior to ordering from the local farm.

The two heuristics differ in the policy for orders from the mainstream farm. In the first heuristic,

the retailer orders a constant amount ym from the mainstream farm at every period regardless of the

4Zipkin (2000) also argues that a base-stock policy is also optimal (with a different base-stock level) when the supply
is capacitated; see pp. 409–410.

25



target service level 0.99
extended shelf life no heuristic 1 heuristic 2

avg mainstream order 2336 2285 2157
avg local order 47 139 263
avg retail profit ($) 1100.05 1113.82 1140.35
avg retail mismatch cost ($) 299.95 286.21 259.67
avg retail overage cost ($) 299.46 285.30 258.80
avg retail underage cost ($) 0.49 0.52 0.51
avg local farm utilization 0.24 0.34 0.65

profit maximization
extended shelf life no heuristic 1 heuristic 2

avg mainstream order 1898 1798 1784
avg local order 120 277 808
avg retail service level 0.47 0.62 0.65
avg retail profit ($) 1307.60 1325.06 1328.02
avg retail mismatch cost ($) 92.40 74.96 72.00
avg retail overage cost ($) 43.85 34.06 33.57
avg retail underage cost ($) 48.54 40.86 38.39
avg local farm utilization 0.49 0.67 1.00

Table 5: The impact of extended shelf life order heuristics on retail performance and local farm operating
conditions when the retailer’s objective is to maximize profit or target service level of 0.99. Expected
discounted profit and costs are calculated for the heuristics and then multiplied by (1 - discount factor) to
derive average per period profit and cost.

state. Therefore, we search over ŷ and ym to select the (ŷ, ym) pair which results in the lowest total

expected discounted cost of the original dynamic programming problem. In the second heuristic, the

retailer uses her knowledge of x(t), y(t) and D̃(t) in choosing ym(t), the amount ordered from the

mainstream farm at time t. The retailer’s objective is to choose ym(t) to bring x(t+ 1), the inventory

at time t + 1 prior to ordering from the local farm, to a predetermined inventory level. That is, we

need to specify a second target inventory level in this heuristic for mainstream orders, denote it by

ŷm. Then, we search over (ŷ, ŷm) pairs to find the pair with the lowest total expected discounted cost.

Numerical Example: Extended Shelf Life. Continuing with the parameters from the numerical

example in Section 5, we illustrate the performance of the two extended shelf life heuristics under

target service level and profit maximization objectives. In Table 5, we see that both extended shelf

life heuristics perform better than hybrid sourcing without extended shelf life on retail profit, local

farm utilization, and retail service level (under the profit maximization objective). Extended shelf
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life increases the probability of selling a given local unit, thus the expected margin on a local unit

increases. Similar to the backhaul mechanism, the retailer takes advantage of this increased margin by

ordering more from the local supplier and reducing the amount ordered from the mainstream supplier.

Moreover, by simply changing the order policy (without any other operational changes), the retailer’s

cost of overage decreases, i.e., the risk of incurring overage cost on a unit of local produce decreases,

thus reducing food waste.

Focusing on the profit maximization objective (bottom half of Table 5), we see that heuristic 2

out-performs heuristic 1 (i.e., retail profit and local farm utilization are higher, and retail overage is

lower under heuristic 2). In the first heuristic, the mainstream order remains constant over time, but

in heuristic 2, both the mainstream and local orders can change every period. Notice that in heuristic

2, the local order increases dramatically (to 808 units) so that the local farm is fully utilized (but

obviously the local farm cannot always fill the retailer’s order). Because the expected margin of a

local unit is higher than a mainstream unit, and the mainstream order can change every period, the

retailer orders everything it can from the local farm and uses the mainstream supplier to make up the

difference. Essentially, the retailer starts to use the mainstream supplier to react to demand volatility!

Ordering a higher percentage of (local) units that have higher probability of being sold increases retail

profit, increases local farm utilization, and decreases food waste. This effect is dampened in the target

service level case (top half of Table 5) because the service level constraint and local farm uncertainty

forces the retailer to continue relying on the mainstream supplier.

7 Conclusion

In this paper, we studied how the geographic constraints of the fresh produce supply chain resulted in

the local food paradox. The proximity of local suppliers to the end consumers allows the retailer to

react better to demand volatility. However, the resulting local order volatility increases the risk and

makes operating conditions very difficult for the local farm.

We studied three mechanisms that are used in practice to incorporate local food into the retailer’s

sourcing policy: coordination, backhauling, and manager’s discretion. Coordination and backhauling

benefit both the retailer and the local farm. Coordination increases the effective capacity and decreases
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the supply uncertainty of the local farm, allowing the retailer to respond better to demand volatility

thus lowering mismatch cost. Backhauling increases the retailer’s margin on local produce. Thus, both

mechanisms induce the retailer to order more from the local farm. Manager’s discretion is obviously

the most effective mechanism for improving operating conditions for the local farm, but profit suffers

when the retailer commits to buying everything the local farm produces.

The effectiveness of these mechanisms also depend on the retailer’s objective function. If the

retailer’s objective is to maintain a high service level, i.e., consistently in stock, the retailer has to

rely even more on the mainstream supplier who is large and reliable, and only order from the local

supplier in the very unlikely even that demand is extremely high. In this case, the effectiveness of

the coordination mechanism is reduced because high service level forces the mismatch cost to be high.

Backhauling is very effective when the retailer’s objective is to maximize profit because it increases

retail margin, but like coordination, it effect is dampened when the retailer’s objective is to achieve a

high service level.

However, we show that combining manager’s discretion and backhauling can be a very effective

way to incorporate local food into the retailer’s sourcing strategy when she targets a high service

level. We show that manager’s discretion and backhauling are complementary mechanisms. The

combination eliminates the local farm’s risk of not selling its produce and for sufficiently low backhaul

cost, increases the retailer’s profit.

Local sourcing can also affect the environmental footprint of the food supply chain. Our results

for the optimal order policy can be used to calculate the change in food miles when hybrid sourcing is

implemented and potentially enrich the food miles metric by incorporating supply chain dynamics. We

also show that upgrading local food transportation and handling processes to the same standards as

the mainstream supply can reduce food waste by increasing local food shelf life. Moreover, the ordering

heuristic we develop suggests that efforts to leverage extended shelf life can benefit the retailer and

local farm.
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A Proofs of the Results in Section 3

Derivations of Equations (3) and (4) For period t arrivals, the retailer orders at time t− 1 from
the mainstream farm and at time t from the local farm. For generality, consider the scenario in which
ordering costs from the local farm and the mainstream farm are different, denoted respectively by wl
and wm; and sales revenue is r regardless of the source of produce.
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First, consider the problem of ordering from the local farm at time t having committed to an
amount ym from the mainstream farm. Assuming unmet demand is lost and ignoring the constraint
on local capacity the retailer’s problem at time t is (cf. Porteus (2002))

max
y≥ym

Π(y) = r
{
λ+ ε̃1 − Eε2 [(λ+ ε̃1 + ε2 − y)+]

}
− wl(y − ym), (23)

where the first term represents average revenue if the inventory level at the start of the period is y
and the second term is the cost of ordering y − ym units from the local farm.

Since y− λ− ε̃1 = Eε2 [(y− λ− ε̃1− ε2)+]−Eε2 [(λ+ ε̃1 + ε2− y)+], equation (23) can be written as

max
y≥ym

Π(y) = (r − wl)(λ+ ε̃1)− [L(y)− wlym] , (24)

where L(y) = wlEε2 [(y − λ− ε̃1 − ε2)+] + (r − wl)Eε2 [(λ+ ε̃1 + ε2 − y)+].
An equivalent problem to that of Equation (24) is given by

min
y≥ym

L(y)− wlym. (25)

Ignoring the ym term without loss of optimality reduces this formulation to a classical newsvendor
problem with the constraint y ≥ ym. The optimal solution to the unconstrained problem is

ỹ = λ+ ε̃1 + σ2z
∗, (26)

where z∗ = Φ−1
(
r−wl
r

)
is the critical fractile. Moreover, setting wl = w yields the statement in (3).

The optimal solution is derived more formally in the proof of Proposition 1.
At time t − 1, the retailer finds optimal order quantity ym from mainstream farms for period t

arrival. Incorporating the capacity limit of the local farm in (25), retailer’s problem is given by

min
ym≥0

(wm − wl) ym + Eεs
[

min
ym+µ+εs≥y≥ym

wl Eε1,ε2 [(y − λ− ε1 − ε2)+]

+ (r − wl)Eε1,ε2 [(λ+ ε1 + ε2 − y)+]

]
. (27)

Setting wm = wl = w yields Equation (4).

Alternative Representations of Equations (3) and (4) For the analysis in the appendix we
use an alternative representation of the retailer’s problem at time t rather than the one in (25). That
is, the retailer solves miny≥ym wl y + r Eε2 [(λ + ε̃1 + ε2 − y)+]. Note that, this follows directly from
Equation (23). Similarly, the retailer’s problem at time t− 1 can be represented by

min
ym≥0

(wm − wl) ym + Eεs
[

min
ym+µ+εs≥y≥ym

wl y + rEε1,ε2 [(λ+ ε1 + ε2 − y)+]

]
. (28)

Proof of Lemma 1. Define D = λ+ ε1 + ε2 as a normal random variable with mean λ and vari-
ance

√
σ21 + σ22. Then, the retailer’s problem is given by miny≥0wED[(y−D)+]+(r−w)ED[(D−y)+],

and the newsvendor solution is y = λ+
√
σ21 + σ22Φ−1

(
r−w
r

)
. �

Proof of Proposition 1. Define L(y) = wEε2 [(y−λ− ε̃1− ε2)+]+(r−w)Eε2 [(λ+ ε̃1 + ε2−y)+],
which can be written as

L(y) = w

∫ (y−ε̃1−λ)/σ2

−∞
(y − ε̃1 − λ− uσ2)φ(u)du+ (r − w)

∫ ∞
(y−ε̃1−λ)/σ2

(ε̃1 + λ+ uσ2 − y)φ(u)du.
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Defining H(x) =
∫ x
0 uφ(u)du, this can be written as

L(y) =w [(y − ε̃1 − λ)Φ
(y − ε̃1 − λ

σ2

)
− σ2H

(y − ε̃1 − λ
σ2

)
]

+ (r − w) [−σ2H
(y − ε̃1 − λ

σ2

)
− (y − ε̃1 − λ) + (y − ε̃1 − λ)Φ

(y − ε̃1 − λ
σ2

)
]

=r[(y − ε̃1 − λ)Φ
(y − ε̃1 − λ

σ2

)
− σ2H

(y − ε̃1 − λ
σ2

)
]− (r − w)(y − ε̃1 − λ)

The derivative of L(y) with respect to y is

dL(y)

dy
= rΦ

(y − ε̃1 − λ
σ2

)
− r + w. (29)

It follows that d2L(y)/dy2 > 0 and L(y) is convex. Then, from (29) we write FOC as

rΦ
(y − ε̃1 − λ

σ2

)
− r + w = 0.

Solving for Φ
(y−ε̃1−λ

σ2

)
gives

Φ
(y − ε̃1 − λ

σ2

)
=
r − w
r

,

which leads to optimal ỹ

ỹ = ε̃1 + λ+ σ2Φ
−1
(
r − w
r

)
.

Amount ordered from the local farm is simply the difference between the optimal inventory level at
the start of the period and the amount already ordered from the mainstream farm. If the amount
already ordered exceeds the optimal inventory level, then the retailer does not order from the local
farm. �

A.1 Proofs of Proposition 2, 3 and 5.

Auxiliary derivations. Recall that ε1, ε2 and εs are mean-zero normally distributed random vari-
ables with standard deviations of σ1, σ2 and σs, respectively. Define U, V and Z as standard normal
random variables such that ε1 = Uσ1, εs = V σs and ε2 = Zσ2. Define v(ym) as the objective of the
retailer’s problem at time t− 1 given in (28) as

v(ym) = (wm − wl) ym + Eεs
[

min
ym+µ+εs≥y≥ym

wl y + rEε1,ε2 [(λ+ ε1 + ε2 − y)+]

]
. (30)

Through the change of variables introduced above this can be written as v(ym) = (wm − wl) ym +

EV
[

minym+µ+V σs≥y≥ym wl y + r EU,Z [(λ + Uσ1 + Zσ2 − y)+]

]
. Optimal y of the inner optimization

problem is max[ym,min(ym + µ + V σs, ỹ)] where ỹ is given by (26) and can be written as ỹ = λ +
uσ1 + z∗σ2 in the new notation. Next, we write v(ym) for a range of u and v.

i. For u < (ym − σ2z∗ − λ)/σ1, i.e. ỹ < ym,

v(ym) = wmym + r

∫ (ym−σ2z∗−λ)/σ1

−∞

∫ ∞
(ym−uσ1−λ)/σ2

(uσ1 + λ+ zσ2 − ym)φ(z)dzφ(u)du
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ii. For ỹ > ym and µ+ vσs < 0,

v(ym) = wmym + r

∫ −µ/σs
−∞

∫ ∞
(ym−σ2z∗−λ)/σ1

∫ ∞
(ym−uσ1−λ)/σ2

(uσ1 + λ+ zσ2 − ym)φ(z)dzφ(u)duφ(v)dv

iii. For ỹ ∈ [ym, ym + µ+ vσs] and µ+ vσs > 0,

v(ym) = wmym + wl

∫ ∞
−µ/σs

∫ (ym+µ+vσs−z∗σ2−λ)/σ1

(ym−σ2z∗−λ)/σ1
(λ+ uσ1 + z∗σ2 − ym)φ(u)duφ(v)dv

+ r

∫ ∞
−µ/σs

∫ (ym+µ+vσs−z∗σ2−λ)/σ1

(ym−σ2z∗−λ)/σ1

∫ ∞
z∗

(z − z∗)σ2φ(z)dzφ(u)duφ(v)dv

iv. For ỹ > ym + µ+ vσs and µ+ vσs > 0,

v(ym) = wmym + wl

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

(µ+ vσs)φ(u)duφ(v)dv

+r

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

∫ ∞
(ym+µ+vσs−σ1u−λ)/σ2

(λ+ uσ1 + z∗σ2 − ym − µ− vσs)φ(z)dzφ(u)duφ(v)dv

Then, combining the statements for v(ym), which covers four parameter regimes, and collecting similar
cost terms together we can write (30) as

v(ym) = wm ym

+wl

{∫ ∞
−µ/σs

∫ (ym+µ+vσs−z∗σ2−λ)/σ1

(ym−σ2z∗−λ)/σ1
(λ+ uσ1 + z∗σ2 − ym)φ(u)duφ(v)dv

+

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

(µ+ vσs)φ(u)duφ(v)dv

+r

{∫ (ym−σ2z∗−λ)/σ1

−∞

∫ ∞
(ym−uσ1−λ)/σ2

(uσ1 + λ+ zσ2 − ym)φ(z)dzφ(u)du

+

∫ −µ/σs
−∞

∫ ∞
(ym−σ2z∗−λ)/σ1

∫ ∞
(ym−uσ1−λ)/σ2

(uσ1 + λ+ zσ2 − ym)φ(z)dzφ(u)duφ(v)dv

+

∫ ∞
−µ/σs

∫ (ym+µ+vσs−z∗σ2−λ)/σ1

(ym−σ2z∗−λ)/σ1

∫ ∞
z∗

(z − z∗)σ2φ(z)dzφ(u)duφ(v)dv

+

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

∫ ∞
(ym+µ+vσs−σ1u−λ)/σ2

(λ+ uσ1 + z∗σ2 − ym − µ− vσs)φ(z)dzφ(u)duφ(v)dv

}
Taking the derivative of this with respect to ym and after several tedious but straightforward steps,
which are omitted for brevity, we arrive at the following

dv(ym)

dym
= (wm − wl)

∫ ∞
−µ/σs

∫ (ym+µ+vσs−σ2z∗−λ)/σ1

(ym−σ2z∗−λ)/σ1
φ(u)duφ(v)dv

+

∫ (ym−σ2z∗−λ)/σ1

−∞
[(wm − r) + rΦ

(ym − λ− uσ1
σ2

)
]φ(u)du

+

∫ −µ/σs
−∞

∫ ∞
(ym−σ2z∗−λ)/σ1

[(wm − r) + rΦ
(ym − λ− uσ1

σ2

)
]φ(u)duφ(v)dv

+

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

[(wm − r) + rΦ
(ym + µ+ vσs − λ− uσ1

σ2

)
]φ(u)duφ(v)dv.

(31)
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Denoting optimal order quantity from the mainstream farm by y∗m
dv(ym)

dym

∣∣∣∣
y∗m

= 0 (32)

yields FOC. Dividing both sides of the equation in (32) by wm − r yields

dv(ym)

dym
=
wm − wl
wm − r

∫ ∞
−µ/σs

∫ (ym+µ+vσs−σ2z∗−λ)/σ1

(ym−σ2z∗−λ)/σ1
φ(u)duφ(v)dv

+

∫ (ym−σ2z∗−λ)/σ1

−∞
[1 +

r

wm − r
Φ
(ym − λ− uσ1

σ2

)
]φ(u)du (33)

+

∫ −µ/σs
−∞

∫ ∞
(ym−σ2z∗−λ)/σ1

[1 +
r

wm − r
Φ
(ym − λ− uσ1

σ2

)
]φ(u)duφ(v)dv

+

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

[1 +
r

wm − r
Φ
(ym + µ+ vσs − λ− uσ1

σ2

)
]φ(u)duφ(v)dv = 0.

Next, consider ∂2v(ym)/∂y2m when wm = wl. Setting wm = wl = w, equation (31) reduces to

∂v(ym)

∂ym
=

∫ (ym−σ2z∗−λ)/σ1

−∞
[(w − r) + rΦ

(ym − λ− uσ1
σ2

)
]φ(u)du

+ Φ
(−µ
σs

) ∂

∂ym

∫ ∞
(ym−σ2z∗−λ)/σ1

[(w − r) + rΦ
(ym − λ− uσ1

σ2

)
]φ(u)du (34)

+

∫ ∞
−µ/σs

∂

∂ym

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

[(w − r) + rΦ
(ym + µ+ vσs − λ− uσ1

σ2

)
]φ(u)duφ(v)dv.

Using Leibniz’s Rule ∂2v(ym)/∂y2m can be written as

∂2v(ym)

∂y2m
=

1

σ1

[
(w − r) + rΦ(z∗)

]
φ
(ym − σ2z − λ

σ1

)
+

∫ (ym−σ2z−λ)/σ1

−∞

( r
σ2
φ
(ym − λ− uσ1

σ2

)]
φ(u)du

+ Φ
(−µ
σs

)−1

σ1

[
(w − r) + rΦ(z∗)

]
φ
(ym − σ2z − λ

σ1

)
+ Φ

(−µ
σs

) ∫ ∞
(ym−σ2z−λ)/σ1

r

σ2

1

σ2
φ
(ym − λ− uσ1

σ2

)]
φ(u)du

+

∫ ∞
−µ/σs

−1

σ1

[
(w − r) + rΦ(z∗)

]
φ
(ym + µ+ vσs − σ2z − λ

σ1

)
φ(v)dv

+

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z−λ)/σ1

r

σ2
φ
(ym + µ+ vσs − λ− uσ1

σ2

)]
φ(u)duφ(v)dv. (35)

The first, third and fifth terms on the right-hand side of (35) are zero because Φ(z) = (r − w)/r. In
addition, other terms are all positive. Thus, for wm = wl, ∂

2v(ym)/∂y2m > 0 and v(ym) is convex.

Proof of Proposition 2. Setting wm = wl = w in (33) yields (5). �

Proof of Proposition 3.

Part 1. The average amount ordered from the local farm increases as the optimal order quantity
from the mainstream farm y∗m decreases. Therefore, it suffices to show that ym decreases as µ increases.
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We want to show that dy∗m/dµ < 0. Using the implicit function theorem, we can write

∂y∗m
∂µ

= −
∂2v(ym)
∂ym∂µ

∂2v(ym)
∂y2m

,

where v(ym) is the objective function of the retailer’s problem at time t−1 given by Equation (4). From
(35), we know that ∂2v(ym)/∂y2m > 0 when wm = wl. It suffices to show that ∂2v(ym)/∂ym∂µ > 0.

The statement for ∂v(ym)/∂ym for wm = wl = w is given by equation (34). Taking the derivative
of ∂v(ym)/∂ym with respect to µ yields

∂2v(ym)

∂ym∂µ
= − 1

σs
φ
(−µ
σs

) ∫ ∞
(ym−σ2z∗−λ)/σ1

[
(w − r) + rΦ

(ym − λ− uσ1
σ2

)]
φ(u)du

+
∂

∂µ

∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

[
(w − r) + rΦ

(ym + µ+ vσs − λ− uσ1
σ2

)]
φ(u)duφ(v)dv. (36)

Note that the first term in (34) does not depend on µ and thus its derivative is zero. Using the
Leibniz’s Rule on the second term of (36) allows us to rewrite (36) as

∂2v(ym)

∂ym∂µ
=− 1

σs
φ
(−µ
σs

) ∫ ∞
(ym−σ2z∗−λ)/σ1

[
(w − r) + rΦ

(ym − λ− uσ1
σ2

)]
φ(u)du

+
1

σs
φ
(−µ
σs

) ∫ ∞
(ym−σ2z∗−λ)/σ1

[
(w − r) + rΦ

(ym − λ− uσ1
σ2

)]
φ(u)du

+

∫ ∞
−µ/σs

∂

∂µ

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

[
(w − r) + rΦ

(ym + µ+ vσs − λ− uσ1
σ2

)]
φ(u)duφ(v)dv. (37)

The first two terms in (37) cancel each other and using Leibniz’s Rule on the third term gives

∂2v(ym)

∂ym∂µ
=

∫ ∞
−µ/σs

−
[
(w − r) + rΦ(z∗)

]
φ
(ym + µ+ vσs − σ2z∗ − λ

σ1

)
φ(v)dv

−
∫ ∞
−µ/σs

∫ ∞
(ym+µ+vσs−σ2z∗−λ)/σ1

r

σ2
φ
(ym + µ+ vσs − λ− uσ1

σ2

)]
φ(u)duφ(v)dv. (38)

The first term on the right-hand side of (38) is zero since Φ(z∗) = (r − w)/r and the second one is
positive. Therefore, ∂2v(ym)/∂ym∂µ > 0, which completes the proof of part (i).

Part 2. Average amount sold by the local farm, call q, is the minimum of the retailer’s order y∗l
and the available supply. That is, q = min(y∗l , (µ + ε̃s)

+). Clearly, q increases in µ since both terms
in the minimum operator increases in µ. The fact that y∗l increases in µ is shown in part (i) of this
proposition.

Part 3. Increasing the mean local supply to µ̃, while keeping mainstream orders at y∗m, can reduce
the retailer’s cost as this is a relaxation on local supply constraint. At the minimum, the retailer can
preserve her original optimal ordering policy, hence realizing the same expected one period cost as
before. �

Proof of Proposition 5. Setting wm = w and wl = b in Equation (33) yields (5). �

A.2 Proofs of Proposition 4 and 6.

Auxiliary derivations. Again, for generality, we consider the scenario in which ordering costs
from local farms and mainstream farms are different, denoted respectively by wl and wm. Define
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z∗ = Φ−1
(
r−wl
r

)
. Then from Proposition 1, the optimal order quantity is y∗l = (λ+ ε̃1 + σ2z

∗− ym)+.
Assume that i) λ + ε̃1 + σ2z

∗ − ym ≥ 0 almost surely and ii) µ + ε̃s ≥ 0 almost surely. Then the
amount received from the local farm can be written as min(λ+ ε̃1 + σ2z

∗ − ym, µ+ ε̃s). The objective
function in (25) (ignoring the ym term without loss of optimality) is given by

L(z) = σ2[wlz + rI(z)], (39)

where z = min(z∗, (ym − λ+ µ+ ε̃s − ε̃1)/σ2) and I(z) = φ(z)− z(1− Φ(z)). It is straightforward to
show that I(·) is convex decreasing.

Then the objective function in (27) can be written as

v(ym) = (wm − wl)ym + Eε1,εs [L(min(z∗, (ym − λ+ µ+ εs − ε1)/σ2))]. (40)

Define another random variable X = εs − ε1 which is a mean-zero normally distributed random
variable with variance σ2x = σ21 + σ2s . Then, defining Z = X/σx as a standard normal variable (40)
becomes

v(ym) = (wm − wl)ym + EZ
[
L
(
min

(
z∗,

ym − λ+ µ+ Zσx
σ2

))]
, (41)

and the derivative of v(ym) with respect to ym is

∂v(ym)

∂ym
= (wm − wl) + EZ

[
L′
(ym − λ+ µ+ Zσx

σ2

) 1

σ2
;
ym − λ+ µ+ Zσx

σ2
≤ z∗

]
,

= (wm − wl) +

∫ (λ−ym−µ+z∗σ2)/σx

−∞
L′
(ym − λ+ µ+ zσx

σ2

) 1

σ2
φ(z)dz. (42)

From (39),

L′(z) = σ2[wl + rI ′(z)]

= σ2[wl + r(−zφ(z)− (1− Φ(z)) + zφ(z)]

= σ2[wl + r(−1 + Φ(z))] (43)

From (42) and (43), the second derivative of v(ym) with respect to ym can be derived as follows:

∂2v(ym)

∂y2m
=

∂

∂ym

∫ (λ−ym−µ+z∗σ2)/σx

−∞
[wl + r(−1 + Φ

(ym − λ+ µ+ zσx
σ2

)
)]φ(z)dz.

Then, using Leibniz Rule gives

∂2v(ym)

∂y2m
= −(wl−r+rΦ(z∗)))φ

(λ− ym − µ+ z∗σ2
σx

)
+

∫ (λ−ym−µ+z∗σ2)/σx

−∞

r

σ2
φ
(ym − λ+ µ+ zσx

σ2

)
φ(z)dz.

The first term is zero by the definition of z∗ and the second term is always positive. Hence,

∂2v(ym)

∂y2m
> 0. (44)

Proof of Proposition 4.

Part 1. The average amount ordered from the local farm increases as the optimal order quantity
from the mainstream farm ym decreases. Therefore, it suffices to show that ym increases as σs increases.
We want to show that dym/dσs > 0. Using the implicit function theorem, we can write

∂ym
∂σs

= −
∂2v(ym)
∂ym∂σs
∂2v(ym)
∂y2m

,

where v(ym) is the objective function of the retailer’s problem at time t − 1 given by Equation (4).
From (44) ∂2v(ym)/∂y2m is positive. Define the random variable X = εs−ε1 as before. In the remainder
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of this proof we will show that ∂2v(ym)/∂ym∂σX is negative, which implies that ∂2v(ym)/∂ym∂σs is
negative.

From (42) we can write

∂2v(ym)

∂ym∂σX
=

∂

∂σX

∫ (λ−ym−µ+z∗σ2)/σX

−∞
L′
(ym + µ− λ+ zσX

σ2

) 1

σ2
φ(z)dz

Using Leibniz Rule and the fact that L′(z) = σ2[w + r(−1 + Φ(z))] yields

∂2v(ym)

∂ym∂σX
=
∂
[λ−ym−µ+z∗σ2

σX

]
∂σX

(w − r + rΦ(z∗))) +

∫ (λ−ym−µ+z∗σ2)/σX

−∞

∂L′
(ym+µ−λ+zσX

σ2

)
/σ2

∂σX
φ(z)dz

=

∫ (λ−ym−µ+z∗σ2)/σX

−∞

∂
[
w − r + rΦ

(ym+µ−λ+zσX
σ2

)]
∂σX

φ(z)dz

=

∫ (λ−ym−µ+z∗σ2)/σX

−∞

zr

σ2
φ
(ym + µ− λ+ zσX

σ2

)
φ(z)dz

Note that the expected order quantity from the local farm is λ − ym + z∗σ2. It is reasonable to

assume that λ− ym + z∗σ2 < µ. Thus ∂2v(ym)
∂ym∂σX

is negative.

Part 2. The local farm’s sales is given by q = min(y∗l , s), where y∗l = λ + z∗σ2 − y∗m + ε1 and
s = µ+ εs are normal random variables, and z∗ = Φ−1

(
r−w
r

)
. Clark (1961) derives a formula for the

maximum of two random variables. Defining λ̃ = λ + z∗σ2 − y∗m, σ =
√
σ21 + σ2s and α = (µ − λ̃)/σ,

Equation (3) of Clark (1961) yields

E(q) = µ− σ[αΦ(α) + φ(α)].

Note that it suffices to show that ∂E(q)/∂σs < 0. Letting α′ = ∂α/∂σs and σ′ = ∂σ/∂σs, we have

α′σ =
∂y∗m
∂σs

− ασ′. (45)

Taking the derivative of E(q) with respect to σs gives

∂E(q)

∂σs
= −σ′[αΦ(α) + φ(α)]− σ[Φ(α)α′ + αφ(α)α′ − αφ(α)α′]. (46)

Rearranging and substituting (45 gives

∂E(q)

∂σs
= −σ′φ(α)− Φ(α)

∂y∗m
∂σs

,

which is negative since ∂y∗m/∂σs > 0.

Part 3. It suffices to show that ∂v(ym)/∂σX > 0. Setting wm = wl = w in (41) yields

v(ym) = EZ
[
L
(
min

(
z∗,

ym − λ+ µ+ ZσX
σ2

))]
,

and the derivative of v(ym) with respect to ym is

∂v(ym)

∂σX
= EZ

[
L′
(ym − λ+ µ+ ZσX

σ2

) Z
σ2

;
ym − λ+ µ+ ZσX

σ2
≤ z∗

]
,

= EZ
[
L′
(ym − λ+ µ+ ZσX

σ2

) Z
σ2

;Z ≤ λ− ym − µ+ z∗σ2
σX

]
.

Note that

L′(z) = σ2[w − r + rΦ(z)] ≤ σ2[w − r + rΦ(z∗)] = σ2[w − r + (r − w)] = 0,

and Z < 0 by the assumption also used in part (i): λ − ym + z∗σ2 < µ. Hence ∂v(ym)/∂σX > 0
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because the product of two negatives is positive. �

Proof of Proposition 6.

Part 1. Clearly, as b decreases the order-up-to-level ỹ = λ + ε̃1 + σ2Φ
−1 ( r−b

r

)
increases. Also,

as will be shown in part 2, the optimal order quantity from the mainstream farm ym decreases as b
decreases. Hence, the optimal order quantity from the local farm increases as b decreases.

Part 2. It suffices to show that ∂ym/∂b > 0. Using the implicit function theorem, we can write

∂ym
∂b

= −
∂2v(ym)
∂ym∂b

∂2v(ym)
∂y2m

.

We showed in (44) that ∂2v(ym)/∂y2m is positive. In the remainder of this proof we will show that
∂2v(ym)/∂ym∂b is negative. Setting wm = w and wl = b in the objective function as stated in (41)
yields

v(ym) = (w − b)ym + EZ
[
L
(
min

(
z∗,

ym − λ+ µ+ ZσX
σ2

))]
,

and the derivative of v(ym) with respect to ym is

∂v(ym)

∂ym
= w − b+ EZ

[
L′
(ym − λ+ µ+ ZσX

σ2

) 1

σ2
;
ym − λ+ µ+ ZσX

σ2
≤ z∗

]
,

= w − b+ EZ
[
L′
(ym − λ+ µ+ ZσX

σ2

) 1

σ2
;Z ≤ λ− ym − µ+ z∗σ2

σX

]
= w − b+

1

σ2

∫ (λ−ym−µ+z∗σ2)/σX

−∞
L′
(ym − λ+ µ+ zσX

σ2

)
φ(z)dz. (47)

Consider the following change of variable ψ = ym−λ+µ+zσX
σ2

. Then rewrite (47) as

∂v(ym)

∂ym
= w − b+

1

σ2

∫ z∗

−∞
L′(ψ)fψ(ψ)dψ.

Then

∂2v(ym)

∂ym∂b
= −1 +

1

σ2

∫ z∗

−∞

∂

∂b
L′(ψ)fψ(ψ)dψ. (48)

From (43) L′(ψ) = σ2[b+ r(−1 + Φ(ψ))] and ∂
∂bL

′(ψ) = σ2. Then Equation (48) simplifies to

∂2v(ym)

∂ym∂b
=− 1 +

∫ z∗

−∞
fψ(ψ)dψ,

which is negative since the second term is a cdf and is always less than 1.

Part 3. This result is implied by part 1 since there is no change in the local farm’s ability to
supply the retailer as b changes.

Part 4. Clearly, when the ordering cost from the local farm wl dropped to b < w, the retailer
achieves a lower cost than when wl = w, using the policy that is optimal for the latter. Using the
optimal policy under backhauling would further reduce the expected one period cost.

�
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A.3 Proof of Proposition 7.

Proof of Proposition 7. At time t, the retailer orders the entire local supply. Thus, at time t− 1,
the retailer’s problem is given by

min
ym≥0

wEε2,ε1,εs [(ym + µ+ εs − λ− ε1 − ε2)+] + (r − w)Eε2,ε1,εs [(λ+ ε1 + ε2 − ym − µ− εs)+].

We define a mean-zero random variable as ε1+ε2−εs with variance σ21+σ22+σ2S . Then, the newsvendor

solution is ym + µ− λ =
√
σ21 + σ22 + σ2SΦ−1

(
r−w
r

)
. �

B Proofs of the Results in Section 4

Proof of Lemma 2. Consider the formulation (13), and let 0 < q1 < q2. Also let yi = y(qi) for
i = 1, 2. By the optimality of y1 for q1 (and the feasibility of y2) we write5

C(y1)− q1S(y1) < C(y2)− q1S(y2). (49)

Similarly, by the optimality of y2 for q2 (and the feasibility of y1), we write C(y1) − q2S(y1) >
C(y2)− q2S(y2), which is equivalent to

q2S(y1)− C(y1) < q2S(y2)− C(y2). (50)

Adding (49) and (50) gives S(y1) < S(y2). �

Proof of Proposition 8. Note that S(y(q(ρ))) = ρ. Therefore, it suffices to show that
C(y(q(ρ))) ≤ C(y) for all y with S(y) ≥ ρ. Since y(q(ρ)) is optimal for the formulation (13)
with penalty q(ρ) we conclude that C(y(q(ρ))) − q(ρ)S(y(q(ρ))) ≤ C(y) − q(ρ)S(y) for all y. Then
by definition of q(ρ), we write C(y(q(ρ))) − q(ρ)ρ ≤ C(y) − q(ρ)S(y), which implies C(y(q(ρ))) ≤
C(y)− q(ρ)(S(y)− ρ).

Note that S(y)− ρ ≥ 0 for all y with S(y) ≥ ρ (feasible y for (12)). Therefore, we conclude that
for all y with S(y) ≥ ρ, C(y(q(ρ))) ≤ C(y). Thus, the order policy y(q(ρ)) is optimal for the retailer’s
problem (12). �

Proof of Proposition 9. The objective function can be written equivalently as follows:

w

∫ ym+yl−λ−ε̃1

−∞
(ym + yl − λ− ε̃1 − ε2)f(ε2)dε2 + (r − w)

∫ ∞
ym+yl−λ−ε̃1

(λ+ ε̃1 + ε2 − ym − yl)f(ε2)dε2

− qΦ
(yl + ym − λ− ε̃1

σ2

)
,

where f is the pdf of ε2. The first order condition gives the following

w

∫ ∞
−∞

f(ε2)dε2 − r
∫ ∞
ym+yl−λ−ε̃1

f(ε2)dε2 −
q

σ2
φ
(yl + ym − λ− ε̃1

σ2

)
= 0.

Rearranging terms give

r − w
r

= Φ
(yl + ym − λ− ε̃1

σ2

)
− q

σ2r
φ
(yl + ym − λ− ε̃1

σ2

)
.

Note that the right-hand side is strictly increasing in yl, from which the result follows after truncating
yl to ensure 0 ≤ yl ≤ µ+ ε̃s. �

5The strict inequality follows from strict convexity and the uniqueness of the optimal solution.
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Proof of Proposition 10. Given the order quantity from the mainstream farm ym, the retailer’s
profit under manager’s discretion (y∗l = µ+ εs) with backhauling is given by

(r− b)λ− (w− b) ym− bE[ (ym +µ−λ+ εs− ε1− ε2)+]− (r− b)E[(λ−µ− ym + ε1− ε2− εs)+]. (51)

Then the retailer’s optimal profit under manager’s discretion with backhauling subject to the service
level, denoted by ΠS

MB(b), can be derived from (11) and (51). Therefore, we conclude that ΠS
MB(·) is

strictly decreasing and continuous in b.

To conclude the proof, let ΠS
H and ΠS

HB(b) denote the retailer’s optimal profit under hybrid
sourcing and hybrid sourcing with backhauling policies ( under the same service level constraint).
First, note that

ΠS
HB(b) > ΠS

H for all b < w. (52)

This follows because backhauling lowers the order cost from the local farm and helps the retailer.
Next, we argue that

ΠS
MB(0) ≥ ΠS

HB(0) > ΠS
HB(b). (53)

The second inequality follows because lowering the unit ordering cost b from the local farmer increases
the retailer’s profit. To see why the first inequality follows, let y∗m, y∗l (ε1, εs) denote the optimal policy
achieving ΠS

HB(0). Then consider the manager’s discretion policy with the same ym, which orders
µ + εs − yl(ε1, εs) more from the local farmer but incurs no additional costs since b = 0. Since the
optimal manager’s discretion policy corresponding to ΠS

MB(0) does at least as well as any feasible

policy we conclude that ΠS
MB(0) > ΠS

HB(0).

Combining (52) and (53) gives ΠS
MB(0) ≥ ΠS

H. Since ΠS
MB(·) is continuous, there exists b̂ > 0

such that ΠS
MB(b) > ΠS

H for b ∈ (0, b̂). This proves that for sufficiently low b, the retailer’s profit
is higher than her profit under hybrid sourcing, and hence also than that under mainstream only
ordering policy.

�

C Derivation of Equation (22) in Section 6

Taking the x(t) term out in (21) yields Ct(x|π) =
∑∞

t=0 α
t E[wy(t) +L(y(t))]−

∑∞
t=0 α

t E[wx(t)|x(t)
]
.

Manipulating the second term, this can be written as

Ct(x|π) =
∞∑
t=0

αt E[wy(t) + L(y(t))]−
∞∑
t=0

αt+1 E[wx(t+ 1)]− wx(t).

Substituting x(t+ 1) = [y(t)−D(t)]+ and combining the terms on the right-hand side yields

Ct(x|π) =

∞∑
t=0

αt E[w(y(t)− α[y(t)− D̃(t)]+ + L(y(t))]− wx(t).

Substituting L+(y) = L(y) + wy − αwEε2 [(y − D̃)+] yields the statement in (22).
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