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Abstract

In this article we extend the research on smart beta strategies by exploring how using an SRI
universe impacts the properties of smart beta portfolios. We focus on four smart beta strategies:
the Equally Weighted (EW), the Most Diversified Portfolio (MDP), the Minimum Variance (MV)
and the Equal Risk Contribution (ERC). Using different estimators of the matrix of covariances,
we apply these strategies to the EuroStoxx universe of stocks, the ASPI and the complement of the
ASPI in the EuroStoxx universe from March 15, 2002 to May 1, 2012. We show that smart beta
strategies, built on the entire universe, concentrate their solution on non-SRI stocks. Consequently,
the portfolios built on the ASPI are more diversified and, tend to have higher turnover. In addition,
their tracking error against EuroStoxx, is smaller than those of their respective counterparts built
on the two other universes, and their distribution of returns has positive skewness, while those of
portfolios built on the two other universes have negative skewness. Consistent with the empirical
literature, all the smart beta portfolios built on the ASPI universe in our sample outperform the
CW portfolio.
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1 Smart beta strategies and Socially
Responsible Investment: Introduc-
tion

Against a background of market disappointments,
such as poor performance of market capitalization
weighted indices and active portfolios, risk-based
strategies stand out as financial vehicles for sophis-
ticated institutional investors. Risk-based strate-
gies are heuristic and quantitative asset allocation
strategies that are special cases of the risk budget-
ing allocation approach; the approach itself is one
type of alternative weighting approach to asset allo-
cation, the other being the fundamental allocation
(Arnott, Hsu, and Moore [2005]). The different
alternative weighting strategies are also known as
smart beta strategies1. These smart beta strategies
define the weights of assets in portfolios as func-
tions of individual and common asset risks. The
strategies are heuristic because they do not rely on
any formal equilibrium model of expected return.
The adoption of smart beta strategies is commonly
justified by three principal arguments (Maillard,
Roncalli, and Teiletche [2010], Demey, Maillard,
and Roncalli [2010]). First, while they implicitly
use estimations of expected returns, smart beta
strategies do not require any stock return forecasts,
which eliminates the challenge of estimating them.
This is an advantage compared to Mean-Variance
approaches. Second, smart beta strategies aim to
improve the risk/return ratio by improving risk di-
versification. This is an advantage compared to
the capitalization-weighted (CW) strategy, which
is usually not mean-variance efficient in practice.
Third, when back-tested, smart beta strategies out-
perform the traditional CW investment strategy.
However, smart beta strategies have two draw-
backs. Not only there is a lack of theoretical
background proving their historical efficiency, but
these strategies also involve issues of stability (i.e.
turnover) and concentration in terms of weighting
of the components of portfolios. To overcome these
drawbacks, asset managers follow different imple-
mentation approaches. The consequence is that
for a given smart beta strategy, institutional in-
vestors are faced with the costs involved in choosing
from a wide range of implementation approaches2,

which will have major implications for the subse-
quent characteristics of their portfolios.
In parallel with the rise of smart beta strategies and
fuelled by the increasing public concern for sustain-
able development (Brundtland et al. [1987]), a type
of investment generally called socially responsible
investment (SRI), is rapidly gaining favour with in-
stitutional investors. Briefly, SRI incorporates non-
financial criteria into the construction of financial
portfolios. These criteria include respecting simple
subjective rules (e.g. no investment in gambling or
tobacco businesses), or meeting a minimum level of
extra-financial performance (e.g. investment in is-
suers that have low carbon emissions or low rate of
fatalities compared to industry competitors). The
latter criterion is evaluated by extra-financial rat-
ing agencies such as VIGEO.
The popularity of SRI is partly explained by a large
literature showing that corporate social perfor-
mance (CSP) can lead to superior economic and/or
financial performance through different mecha-
nisms (Renneboog, Horst, and Zhang [2008], Kitz-
mueller and Shimshack [2012]). However, a re-
view of these mechanisms is outside the scope of
this paper and is covered in a companion paper
that focuses on the question of the performance of
SRI. The principle of SRI is to incorporate extra-
financial criteria into portfolio construction so as to
capture these characteristics and yield higher risk-
adjusted returns in the long-run3.
In the light of these two parallel trends, smart beta
strategies and SRI, a key question arises for insti-
tutional investors. If firms that demonstrate a high
level of CSP are different from low CSP firms, are
the characteristics of smart beta portfolios modi-
fied by an SRI universe? A positive answer would
imply that institutional investors should run a new
selection process, to decide which implementation
approach for a smart beta strategy is in their best
interests for the SRI universe. A negative answer
would imply that institutional investors could keep
their current smart beta portfolio managers and
just switch to an SRI universe.
Here, we seek to extend the research on smart beta
allocation by examining the impact of using an SRI
universe on certain characteristics of smart beta
portfolios. We look at four smart beta strategies,
the Equally Weighted (EW), the Most Diversified
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Portfolio (MDP), which is equivalent to the modi-
fied Maximum Sharpe Ratio (MSR) portfolio, the
Minimum Variance (MV) and the Equal Risk Con-
tribution (ERC). Using different estimators of the
matrix of covariances, we apply these strategies to
the EuroStoxx universe of stocks, the ASPI and
the complement of the ASPI in the EuroStoxx uni-
verse4.
Six types of impact of using the ASPI universe of
stocks emerge from our study. First, smart beta
strategies applied on the EuroStoxx favour stocks
that do not belong to the ASPI universe. Second,
there is increased diversification of the weight and
risk measure distributions. Third, smart beta port-
folios built on the ASPI universe tend to present
higher weight and component turnovers. Fourth,
the distributions of returns of portfolios built on
the ASPI universe have positive skewness, while
with the two other universes, portfolios have distri-
butions of returns with negative skewness. Fifth,
the volatility of tracking error against EuroStoxx
of smart beta strategies built on the ASPI universe
is lower than that of their respective counterparts
built on the two other universes. Finally, on the
ASPI universe, all the smart beta strategies domi-
nate the CW strategy, which is similar to findings
on the two other universes and consistent with the
empirical literature.
Thus we are able to conclude that combining the
smart beta strategies with the SRI approach does
modify some properties of smart beta portfolios.
This means that the adoption of SRI is not neu-
tral, and needs particular attention from the insti-
tutional investors.
In the rest of the paper we first present the four
smart beta strategies examined. Section 2 gives
the data and methodology for our back-tests and
in section 3 we analyze portfolios characteristics.
The two last sections review the robustness of our
results regarding risk models and conclude.

2 Smart beta strategies: calculation
of weights

According to Demey, Maillard, and Roncalli [2010]
there are four common types of smart beta strate-
gies yielding four types of smart beta portfolios.

In this section we review these four strategies and
their particular risk contribution properties.
The first type is the EW portfolio. The EW portfo-
lio depends solely on the number n of components
and its weights wi are given by:

∀i, wi = 1
n

(1)

This portfolio is straightforward and presents good
out-of-sample performance compared to optimal
portfolios (DeMiguel, Garlappi, and Uppal [2009]).
It is perfectly diversified in weights, by construc-
tion.
The second type is the MV portfolio. The vector of
weights w of the MV portfolio, with the variance-
covariance matrix Σ, is given by the following op-
timisation program:

w = arg min(w′Σw)

s.t.
n∑
i

wi = 1

∀i, 0 ≤ wi ≤ 1

(2)

This portfolio is straightforward to understand: it
has the lowest ex ante volatility, does not rely
on expected return input and offers good relative
performance (Clarke, Silva, and Thorley [2006],
Scherer [2011]). In addition, marginal risks (MR)
are equal for all the components with a weight dif-
ferent from zero.

∀i, j, (wi 6= 0 ∧ wj 6= 0⇒ δσ(w)
δwi

= δσ(w)
δwj

) (3)

The third type of portfolio, the MDP (Choueifaty
and Coignard [2008]) or modified MSR (Martellini
[2008]), is more complicated. To obtain the vec-
tor of weights w of this portfolio, Choueifaty and
Coignard [2008] introduce a diversification measure
that is maximized:

w = arg max( w′σ√
w′Σw

)

s.t.
n∑
i

wi = 1

∀i, 0 ≤ wi ≤ 1

(4)

This portfolio does not explicitly rely on expected
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return input (see the introduction of Martellini
[2008]); it is more diversified and less sensitive to
small modifications in inputs than the MV port-
folio. In addition, relative marginal risk (RMR) is
equal for all the components with a weight different
from zero.

∀i, j, (wi 6= 0 ∧ wj 6= 0

⇒ 1
σi

δσ(w)
δwi

= 1
σj

δσ(w)
δwj

)
(5)

The last type is the ERC portfolio (Maillard, Ron-
calli, and Teiletche [2010]), also rather complicated,
where the risk contribution (RC) of each asset is
the same.

∀i, j, (wi
δσ(w)
δwi

= wj
δσ(w)
δwj

) (6)

The composition of this portfolio is given by the
following program:

w = arg min(
n∑
i=1

n∑
j=1

(wi(Σw)i − wj(Σw)j)2)

s.t.
n∑
i

wi = 1

∀i, 0 ≤ wi ≤ 1

(7)

This portfolio does not explicitly rely on expected
return input, by construction it is well diversified
in terms of weights5 and risk, and it is less sensi-
tive to slight modifications in inputs than the MV
or MDP portfolios (Demey, Maillard, and Roncalli
[2010]).

Table 1: Smart beta strategies: a comparison
The table lists the conditions (columns) on stocks necessary for each strategy (lines) to be equivalent either to

one other strategy or to the tangent portfolio.

Conditions on stocks
Strategies Same Same expec- Same cor- Same Sharpe Equivalent

volatility ted return relation ratio to
EW X X X Tangent
MV X Tangent

MDP/mMSR X MV
MDP/mMSR X Tangent

ERC X X Tangent
ERC X MDP/mMSR
ERC X (ρ = −1

N−1 ) MV
ERC X X EW

Table 1, based on the literature, summarizes how
the different smart beta strategies stand in relation
to each other, and to the tangent portfolio. Note
that depending on the statistical properties of the
stocks included in the portfolios, different strate-
gies can yield the same allocation and the latter can
be the tangent portfolio. In particular, the ERC
and the MDP portfolios are to be identical when
pairwise correlation is uniform. Since we use the
constant correlation matrix of covariances in our
analyses, it is important to control for this case.
Finally these different approaches, apart from the
EW portfolio, rely on the matrix of variances and
covariances Σ. In the next section we present the
different risk models we use to estimate our four
portfolios.

3 Data and methodology of the study

We run our back-tests using daily returns (adjusted
price and arithmetic returns) for three different
universes of stocks: the EuroStoxx, the ASPI and
the complement of the ASPI in the EuroStoxx uni-
verse. We use data from March 15, 2002 to May 1,
2012. Our data sources are, Datastream for prices
and composition of the EuroStoxx, and IEM6 for
composition of the ASPI index. We check the relia-
bility of our in-house-built universes by calculating
the volatility of the tracking error (TEV) of the
CW portfolios with the respective indices. We ob-
tain a TEV of 26.9 bps for the replication of ASPI
and a TEV of 11.6 bps for the replication of Eu-
roStoxx, which are common levels of TEV (table 2).
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Because the ASPI is a best-in-class index, we can
verify that the industrial composition of the differ-
ent universes are similar (table 3). Finally, we use
arithmetic returns and calculate all returns in Eu-
ros7 and, following the indices calculation method-

ology, we rebalance the portfolios at closing on the
third Friday of March, June, September and De-
cember. The portfolios weights are allowed to drift
between rebalancing dates.

Table 2: Performance of real and replication of CW indices
Performance of real and replication of CW indices from March 15, 2002 to May 1, 2012. The two replicated CW
portfolios are benchmarked against their respective real counterparts (i.e. real EuroStoxx and ASPI). We also
report statistics on performances and crossed benchmark for the two real indices. Sharpe ratio is calculated
against a zero risk free rate. Annualized realized performance is annual rate equivalent to total performance.

EuroStoxx EuroStoxx ASPI ASPI
Replication Real Replication Real

Historical performance
Total realized perf. (%) -26,58 -26,37 -29,74 -29,67

Annualized perf. (%) -2,99 -2,97 -3,41 -3,40
Volatility (%) 23,14 23,49 24,20 24,52
Sharpe ratio -0,13 -0,13 -0,14 -0,14

Max. draw down (%) -61,79 -61,75 -60,30 -60,10
Performance of tracking

Daily TE (%) -0,0004 0,0008 -0,0003 -0,0008
TEV (%) 0,1160 0,2623 0,2699 0,2623

Information ratio -0,0037 0,0030 -0,0012 -0,0030
Correlation 0,9999 0,9984 0,9999 0,9984

Table 3: Industrial average composition
Column A is Consumer Discretionary, B is Consumer Staples, C is Energy, D is Financials, E is Health Care, F is

Industrials, G is Information Technology, H is Materials, I is Telecommunication Services, J is Utilities.

Nb A B C D E F G H I J NA TOTAL
EuroStoxx 41,4 23,2 11,0 63,9 14,1 48,8 14,3 26,1 11,5 18,4 32,8 305,4
Comp 22,9 12,2 7,0 41,3 10,3 30,7 6,0 16,6 6,2 12,5 22,1 187,9
Aspi 18,5 11,0 4,4 23,4 3,6 18,0 9,2 9,5 5,3 5,9 11,0 119,9
% A B C D E F G H I J NA TOTAL

EuroStoxx 13,6% 7,6% 3,6% 20,9% 4,6% 16,0% 4,7% 8,5% 3,8% 6,0% 10,8% 100%
Comp 12,2% 6,5% 3,7% 22,0% 5,5% 16,3% 3,2% 8,8% 3,3% 6,7% 11,8% 100%
Aspi 15,4% 9,2% 3,7% 19,5% 3,0% 15,0% 7,7% 7,9% 4,4% 4,9% 9,2% 100%

For the EuroStoxx and the complement universes
of stocks, the weights of CW portfolios are calcu-
lated using free float market capitalization based
on Datastream information. The EW portfolios
weights are given by the number of components,
which is around 300 for EuroStoxx and around 180
for the complement of ASPI in the EuroStoxx uni-
verse8. For MV, MDP, ERC portfolios, we esti-
mate weights by optimizing the respective objec-
tive functions introduced in the previous section.
For the three optimization programs, constraints
are no short-sells and no cash holdings. For the
ASPI universe of stocks, the weights of CW portfo-
lios are calculated using information given by IEM.
The EW portfolio weights are given by N=120, the
number of components of ASPI9. For MV, MDP,
ERC portfolios, we estimate weights by optimiz-

ing the respective objective functions introduced in
the previous section. For EuroStoxx and the com-
plement universe, optimization constraints are no
short-sells and no cash holdings.
Note that the solutions of the MV, MDP and ERC
optimization programs depends on the matrix of
variances and covariances (the VCV matrix) of
stock returns. The estimation of the VCV ma-
trix is challenging, and consequently the solutions
given by the optimizations are not stable, leading
to high turnover. To improve the stability of solu-
tions given by MV, MDP and ERC optimizations,
different estimators of the VCV matrix have been
proposed in the literature, a reminder of the diver-
sity of implementation that investors may face. To
control for the possible impact of the VCV matri-
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ces, we use four estimators: the empirical, the con-
stant correlation, the shrinkage estimator with the
constant correlation VCV matrix, and the shrink-
age estimator with the one-factor model VCV ma-
trix (Ledoit and Wolf [2004]). At the outset and at
each rebalancing, we update the VCV matrix from
a 260-day rolling window of the most recent histor-
ical data10. Another problem in MV and MDP op-
timizations is the high concentration of solutions.
As examined and proposed by Maillard, Roncalli,
and Teiletche [2010], we run MV and MDP opti-
mization programs with upper-bound constraints
(5� or 10� ) for weights.
As for our method of analysis, we first describe the
portfolios that we obtain in terms of number of
components, number of differences between portfo-
lios yielded by the same strategy on different uni-
verses and, differences in weights for identical com-
ponents in portfolios yielded by the same strategy
applied to different universes. This enables us to
compare portfolios. Second we focus on diversifica-
tion, by reporting for each portfolio and universe,
the relative mean difference coefficients for weights,
risk budget11, marginal risk, relative marginal risk
and risk contribution. The use of relative mean
difference will be explained later. Third we focus
on turnover, by reporting for each portfolio and
universe, turnover of components and turnover of
weights. Regressions are performed for all three
steps to analyze the correlation of particular char-
acteristics of portfolios with the strategy and the
universe used. These regressions give us the eco-
nomic and statistical significance of the relations of
interest while controlling for particular parameters.
Finally, we focus on performance. For each port-
folio and universe we report descriptive statistics
regarding the statistical properties of the distribu-
tion of returns of the different portfolios. We re-
port annualized historical performance, annualized
historical volatility, annual Sharpe ratio, historical
maximum draw down, correlation with benchmark
(i.e. the replications of ASPI or EuroStoxx), mean
of daily return, its standard error, their two annu-

alized values, mean daily tracking error12, volatility
of daily tracking error and daily information ratio.
Our default case is the empirical VCV matrix.
To develop analyses that are not dependent on
the VCV matrix, we also run the regressions on
datasets that pool the back tests obtained with
the four VCV matrices. We discuss the impact of
changing the risk model in section 6.

4 Analysis of portfolios characteris-
tics

Composition and differences in composition
of portfolios
We first report and analyze the composition and
differences in composition of portfolios (Figures 1,
2), so as to describe the portfolios obtained and
to measure degrees of similarity between portfolios
yielded by the same strategy applied to the differ-
ent universes.
First, we analyzed portfolio composition. By sim-
ply counting the number of components (Figure
1), we distinguished two types of strategy: strate-
gies that invest in the entire available universe (i.e.
CW, EW, ERC) and strategies that pick some
stocks from the available universe (i.e. MV, MDP
and their bounded versions). Although this typol-
ogy is obtained with the empirical VCV matrix, it
is stable when we switch to other types of VCV.
Only the MDP strategy with a constant VCV ma-
trix is modified (cf. Table 1).
Second, we calculated differences in portfolio using
two measures of difference. Measure D1 is the ab-
solute difference in weights wi between the compo-
nents of portfolios A and B. With n as overlapping
components, this measure is given by the following
formula13:

D1(A,B) = 1−
n∑
i

min(wAi, wBi) (8)

6



P. Bertrand, V. Lapointe Working Paper

Fi
gu

re
1:

N
um

be
r
of

co
m
po

ne
nt
s
of

po
rt
fo
lio

s

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

C
W

 

 

A
S

P
I

A
S

P
I 
C

O
M

P
.

E
U

R
O

S
T

O
X

X

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

E
W

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

1
5

3
0

4
5

6
0

M
D

P

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

1
5

3
0

4
5

6
0

M
V

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

E
R

C

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

1
5

3
0

4
5

6
0

M
D

P
 −

 5
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

1
5

3
0

4
5

6
0

M
D

P
 −

 1
0
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

1
5

3
0

4
5

6
0

M
V

 −
 5

%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

1
5

3
0

4
5

6
0

M
V

 −
 1

0
%

7



P. Bertrand, V. Lapointe Working Paper

Fi
gu

re
2:

W
ei
gh

ts
di
ffe

re
nc
es

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

C
W

 

 

A
S

P
I 
v
s
 C

O
M

P
.

C
O

M
P

. 
v
s
 S

T
O

X
X

A
S

P
I 
v
s
 S

T
O

X
X

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

E
W

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

E
R

C

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

G
M

V

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

M
D

P

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

M
D

P
 −

 5
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

M
D

P
 −

 1
0
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

G
M

V
 −

 5
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

G
M

V
 −

 1
0
%

8



P. Bertrand, V. Lapointe Working Paper

Fi
gu

re
3:

Tu
rn
ov
er

of
we

ig
ht
s

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

C
W

 

 

A
S

P
I

A
S

P
I 
C

O
M

P
.

S
T

O
X

X

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

E
W

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
D

P

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
V

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

E
R

C

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
D

P
 −

 5
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
D

P
 −

 1
0
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
V

 −
 5

%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
V

 −
 1

0
%

9



P. Bertrand, V. Lapointe Working Paper

Fi
gu

re
4:

Tu
rn
ov
er

of
co
m
po

ne
nt
s

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

C
W

 

 

A
S

P
I

A
S

P
I 
C

O
M

P
.

S
T

O
X

X

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

E
W

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
D

P

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
V

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

E
R

C

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
D

P
 −

 5
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
D

P
 −

 1
0
%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
V

 −
 5

%

1
5
/0

3
/2

0
0
2

1
5
/0

6
/2

0
0
7

0
1
/0

5
/2

0
1
2

0
.2

5

0
.5

0
.7

51

1
.2

5

1
.5

1
.7

52

M
V

 −
 1

0
%

10



P. Bertrand, V. Lapointe Working Paper

Measure D2 is the relative number of differences in
the list of components of portfolio A with respect
to the list of components of portfolio B. It is given
by the following formula14:

D2(A,B) = 1− card A ∩B
min(card A, card B) (9)

Using D1 in combination with D2, enables us to
allow for the fact that certain strategies only pick
some stocks from the available universe. Hence,
while the two measures are consistent in the two
extreme situations (perfect overlap and perfect dif-
ference), they can differ in other situations, espe-
cially where there are highly concentrated solu-
tions. Thus, we think it is important to explic-
itly track differences in lists of components to avoid
misleading comparisons based solely on differences
in weights.
This second analysis of the overlap of components
yields two main findings. First, weight overlap-
ping is much higher with CW than with the other
strategies (Figure 2). The CW portfolio built
on the ASPI has few differences in weights (i.e.
high weight overlapping), while the other strate-
gies built on the ASPI universe have wide differ-
ences in weights (i.e. low weight overlapping). Our
proposed explanation is the positive correlation be-
tween belonging to ASPI and size of firms in our
sample. We recall thatD1, our difference in weight,
is one minus the sum of the lowest weights of stocks
that are in the two portfolios based on the two dif-
ferent universes. As ASPI rules discard about 60�
of the EuroStoxx stocks, while we observe only 30�
of weight differences, the remaining 40� stocks then
must concentrate about 70� of the weights. Con-
sistent with this explanation by size of firms, on
average the market values of firms in the ASPI are
3.74 times greater than the market values of firms
in EuroStoxx. Finally, the relative mean differences
of weights in the CW ASPI we calculate in the next
sub-section indicate that firms in the ASPI are in
general larger than in the EuroStoxx.
Second, smart beta allocations built on the ASPI
universe have very low overlap with portfolios built
on the EuroStoxx universe (Figure 2). This means
that the optimization programs behind the smart
beta allocations concentrate the program solution

on firms that are not socially responsible. Hence,
on an ex ante basis, portfolios built on the ASPI
universe are less optimal than portfolios built on
the EuroStoxx and complement of ASPI universes.
The latter will be recalled in the section on perfor-
mance.
Diversification of portfolios
The literature suggests that the advantage of smart
beta allocations is better diversification than with
the CW allocation. Thus, given that SRI is criti-
cized for reducing opportunities for diversification,
our main objective is to analyze how using an SRI
universe impacts this strong point of smart beta
strategies. We now analyze the diversification of
portfolios through diversification of weights and di-
versification of risk budget, marginal risk, relative
marginal risk and risk contribution.
First, we measure diversification of the previously
listed characteristics of portfolios. Usually, diversi-
fication is measured with the Gini coefficient; how-
ever the Gini coefficient is valid only if the sup-
port of the analyzed distribution is null or posi-
tive. Since some of the characteristics we analyze
can take negative values, we measure diversification
via relative mean difference15 (RMD). For a given
distribution of measure m, with n observations, we
apply the following formula:

RMDm =
1
n2

∑n
i=1

∑n
j=1 |mi −mj|
m̄

(10)

For each strategy, for each universe and for each
VCV matrix, we calculate the RMDs on the entire
universe available and at each rebalancing date, for
the weight distributions and the four risk measures.
We obtain four samples of time series of RMDs that
are used in the second step of our diversification
analysis.
Second, after analysing these RMD time series we
analyze jointly the measures of diversification of
the different characteristics of portfolios. Indeed
the diversification of a portfolio is a notion that
covers different characteristics of the studied port-
folio. We pool the five portfolios’ characteristics
of interest (i.e. weight, risk budget, marginal risk,
relative marginal risk and risk contribution) and
run regressions of the RMDs on different factors

11



P. Bertrand, V. Lapointe Working Paper

we detail latter. The purpose is to identify, in an
unconditional and controlled statistical approach
the relationship between diversification and the use
of the ASPI universe, while testing for statistical
significance. The approach consists in regressing
two samples of pooled RMDs of weights and risk
measures on universe dummies, strategy dummies,
interaction dummies, control dummies and num-
ber of components in respective portfolios and uni-
verses. Sample A groups RMDs obtained with the
empirical VCV. Sample B groups RMDs obtained
with the four VCV matrices. The control dummies
control for size of portfolio, size of universe of ref-
erence, time and other technical controls16.

The results of the analysis of time series are two-
fold. First, when we focus on the degree of diversi-
fication of strategies built on the same universe, we
observe rankings similar to Maillard, Roncalli, and
Teiletche [2010]. The most diversified are the EW
and the ERC, followed by the CW, and finally the
MDP and the MV, the most concentrated in risk
and weights. Second, when we focus on the degree
of diversification of strategies over the three uni-
verses and the five measures, we observe no mod-
ification in ranking when switching from ASPI to
EuroStoxx or to the complement of the ASPI in the
EuroStoxx universe of stocks. However, it emerges
that portfolios constructed on the ASPI universe
tend to be the most diversified.

Table 4: Analysis of diversification

RMDit = β0 + β1 ∗DASP I
i + β2 ∗D

¯ASP I
i + β3 ∗DERC

i + β4 ∗DEW
i + β5 ∗DMDP

i + β6 ∗DMV
i + β7 ∗DASP I

i ∗
DStrategies

i + β8 ∗D
¯ASP I

i ∗DStrategies
i + β9 ∗ Controlsit + εit

We regress on group dummies measure of concentration of the distributions of the different characteristics of
interest. These regressions are estimated with a FGLS estimator with HC p-values Beck and Katz [1995]. Sample
A is a panel of 135 series with 41 dates that groups RMDs obtained with the empirical VCV. Sample B is a panel
of 450 series with 41 dates that groups RMDs obtained with the four VCV matrices. Universe size and Portfolio
size are actual size divided by 100. We control for the type of measure and for the cases of perfect diversification
that are predicted by theory. These regressions show significant positive correlation between diversification and

use of the ASPI universe. Significant coefficients at the confidence level of 10% and below are in bold.

Sample A Sample B
coef. s.d. p-value coef. s.d. p-value

cst 2,02 0,30 0,00 1,99 0,34 0,00
ASPI -0,40 0,18 0,03 -0,41 0,20 0,04

¯ASPI -0,29 0,27 0,28 -0,30 0,35 0,38
ERC -0,41 0,32 0,20 -0,46 0,29 0,12
EW -0,41 0,22 0,07 -0,42 0,30 0,16

MDP -0,28 0,24 0,24 -0,39 0,26 0,14
MV -0,23 0,22 0,29 -0,31 0,26 0,22

ASPI*ERC 0,03 0,21 0,89 0,05 0,19 0,81
ASPI*EW 0,06 0,12 0,60 0,06 0,15 0,68

ASPI*MDP 0,35 0,21 0,09 0,30 0,22 0,18
ASPI*MV 0,34 0,19 0,08 0,39 0,21 0,07
¯ASPI*ERC 0,10 0,31 0,73 0,10 0,34 0,77
¯ASPI*EW 0,11 0,26 0,67 0,11 0,34 0,75

¯ASPI*MDP 0,28 0,28 0,31 0,25 0,35 0,48
¯ASPI*MV 0,30 0,28 0,28 0,32 0,34 0,35

Port. size -0,20 0,02 0,00 -0,22 0,02 0,00
Univ. size 0,04 0,06 0,54 0,05 0,05 0,34

Time -0,00 0,00 0,25 -0,00 0,00 0,47
Bound 5% -0,05 0,11 0,66 -0,05 0,09 0,59
Bound 10% -0,02 0,09 0,86 -0,01 0,08 0,86

Controls Yes Yes
Adj. R squared 0,29 0,28

The results of the controlled regressions (table 4)
confirm that the ASPI universe is correlated with
higher diversification, how strongly depending on
the strategy used. With the MV and the MDP,
the effect on diversification is weaker than with the
CW, the EW, the ERC, whatever the VCV ma-

trix used. The regressions also confirm that the
four smart beta strategies yield more diversified
distributions than the CW strategy, and that the
EW and ERC strategies are the most strongly cor-
related with higher diversification. Two further
observations emerge from the regressions: first,
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adding bounds to the MV and MDP strategies im-
proves diversification but this improvement is not
statistically significant; second, the complement of
the ASPI universe is also correlated with more di-
versified distributions; once again, however this is
not statistically significant. Third, portfolio size is
positively related to diversification of distributions:
the larger the portfolio, the more diversified it is.
Turnover of portfolios
The literature identifies one drawback of smart
beta allocations as being a higher level of turnover
than with CW allocation, leading to higher trans-
action costs. Here, therefore, we examine how us-
ing an SRI universe impacts this disadvantage of
smart beta allocations, in two steps.
First, we calculate two measures of the turnover of
portfolios. T1 measures the turnover of the weights,
and is defined by the following formula17 (Demey,
Maillard, and Roncalli [2010]):

T1(t) =
n∑
i

|wi(t)− wi(t− 1)| (11)

T2 measure the turnover of components at a rebal-
ancing date. For a portfolio that contains set of
stocks At at time t, with INt the set of entering
components at time t and OUTt the set of exiting
components at time t, component turnover is given
by the following formula18:

T2(t) = card INt

card At
+ card OUTt

card At−1
(12)

Using measure of turnover T1 with measure T2 en-
ables us to allow for the fact that some strategies
only pick some stocks out of the available universe.
Since there is a difference between handling concen-
trated turnover and handling a diversified turnover,
we think it is important to explicitly keep track
of the number of components that change at re-
balancing date. We calculate the two measures of
turnover at each rebalancing date, for each strat-
egy, for each universe and for each VCV matrix.
In total, we obtain 8 samples of time series of mea-
sures of turnover, which are used in the second step
of our turnover analysis.

Second, after a basic analysis of these times series,
we run regressions of each measure of turnover on
different factors. As with diversification, the aim is
to have controlled statistical measurements of the
relationship between turnover and use of the ASPI
universe while testing for statistical significance.
The approach consists in regressing two samples of
measure T1 and two samples of measure T2 against
universe dummies, strategy dummies and number
of components in portfolios and universes. For each
measure, sample A groups the measures of turnover
obtained with the empirical VCV, while sample B
groups the measures of turnover obtained with the
four VCV matrices.
Our basic analysis reveals that the weight turnover
is the lowest for EW portfolios (Figure 3), the sec-
ond lowest turnover being for the CW strategy.
The CW strategy is not the one with the lowest
turnover in our case, contrary to Carvalho, Lu,
and Moulin [2012]. The third lowest turnover is
for the ERC strategy. MV and MDP portfolios
have similar weight turnovers, those of the MV
portfolios, however, being more volatile than the
turnovers of the MDP portfolios. Similarly, com-
ponent turnover is the lowest for the EW, the
CW and the ERC strategies (Figure 4). How-
ever, when measure T2 is used, the three strate-
gies have the same component turnover. Since
they invest in the entire available universe, this
component turnover requests solely from universe
modifications. MV and MDP strategies have sim-
ilar component turnovers; however the turnover
of the MV strategy is more volatile than that of
the MDP strategy. No modification in these re-
sults is observed when switching from ASPI to Eu-
roStoxx or to the complement of the ASPI in the
EuroStoxx universe of stocks. And overall we can-
not tell whether the utilisation of ASPI leads to
higher turnover or not by simply looking at these
time series.
The results of the controlled regressions show that
the utilization of the ASPI universe is associated
to a larger turnover than the complement of ASPI
and the EuroStoxx universe, but this relationship
is not statistically significant19.
Performance of portfolios
Table 5 reports annual performance, annual Sharpe
ratio, historical maximum draw down, annualized
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mean of daily return, historical volatility, skewness
and kurtosis of daily returns for all the strategies,
and for the three universes.
In Table 6, we report the correlation with the re-
spective universe benchmark (i.e. the replications
of ASPI or EuroStoxx), the average daily tracking
error20, the volatility of that daily tracking error
and the daily information ratio. Finally, in Table 7
we report the correlation of all the strategies on the
three universes with the replication of EuroStoxx,
the average daily tracking error21, the volatility of
that daily tracking error and the daily information
ratio22.
We recall that strategies investing in the entire
available universe (i.e. CW, EW, ERC) can be dis-
tinguished from those that pick some stocks out of
the available universe (i.e. MV, MDP and their
bounded versions). When all the strategies are
compared (Table 5), all except the unbounded MV
strategy outperform the CW portfolio in the three
universes. This is in line with the literature.
When the strategies picking only some stocks out
of the available universe are compared, the MV and
the MDP portfolios are seen to be taking big bets.
The results of our back tests illustrate what hap-
pens when one of these bets is "lost" or "won". For
instance, at the end of February 2009, Petroleos
(CEPSA) lost 57� of its value in three days. At
that time, using the EuroStoxx universe, the MV
strategy had more that 80� invested in that stock
and the MDP strategy had about 53� invested.
Conversely, the performance of the MV strategy
applied to the ASPI universe of stocks illustrates
what happens when the bets are "won". Because of
this manner of weighting, the MV and MDP strate-
gies have the highest kurtosis and skewness of all
the strategies. Finally, of all the strategies, the MV
and the MDP have the lowest ex post volatility and
the highest TEV. Their constrained versions have
lower ex post volatility and lower TEV. Like Car-
valho, Lu, and Moulin [2012], we observe that the
constrained versions of the MV and MDP strategies
show economically significant higher Sharpe ratios
than the other strategies (Tables 5, 6).
When strategies investing in the entire available
universe of stocks are compared to stock picking

strategies, we observe that they show distributions
of returns that are less asymmetric and prone to
extremes. Moreover, of the strategies investing in
the entire available universe of stocks, it is the
ERC strategy that has the lowest ex-post volatility,
the smallest maximum drawdown, the highest TEV
and the highest Sharpe ratio. The ERC strategy
also has the highest return and the lowest ex-post
volatility (Tables 5, 6).
We now turn to the impact of the universe of stocks
on the characteristics of a given type of strategy.
When we analyze the impact of the ASPI uni-
verse on the performance of strategies, the un-
bounded MV and MDP strategies on the ASPI
universe outperform all the other strategies on all
the other universes (Table 5). In Sharpe ratio, the
unbounded MV outperforms the other strategies,
and the smart beta strategies built on the ASPI
universe generally outperform their counterparts
built on the two other universes. The information
ratios obtained with their respective benchmarks
and those obtained with the replication of the Eu-
roStoxx (Tables 6, 7) show similar results, with the
exception that unbounded MV no longer outper-
forms the others. In all cases, the unbounded MV
and MDP strategies on the ASPI universe, yield
better mean-variance portfolios with high kurto-
sis and positive skewness. The latter is also true
for the strategies that invest in the entire universe
(i.e. CW, EW, ERC). However, despite their pos-
itive skewness, the CW, EW and ERC strategies
yield significantly poorer mean-variance portfolios.
Finally, the smart beta strategies on the ASPI, ex-
cept for the 1/n, are seen to have lower volatility of
tracking error against the EuroStoxx than any of
the smart beta strategies applied on the two other
universes (Table 7).
When the complement of ASPI universe is used,
the strategies investing in the entire universe yield
the best performing portfolios, with highest returns
and lowest ex-post volatility (Table 5). However
the distribution of returns of the CW, EW and
ERC portfolios built on the complement of ASPI
tends to be exposed to negative extreme returns.
This trend gets stronger when we switch to strate-
gies that pick some stocks out of the available uni-
verse.
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Hence, the distribution of returns of the MV and
MDP portfolios built on the complement of ASPI
have high kurtosis and negative skewness. This is
consistent with the observation that investors per-
ceive a correlation between extreme specific risk
and weak social performance (Waddock and Graves
[1997], Hong and Kacperczyk [2009]), and with
empirical findings (Boutin-Dufresne and Savaria
[2004]).
When the EuroStoxx universe is used, we obtain
statistics that are similar to these obtained with the
complement of ASPI. This is consistent with the
high level of overlapping previously revealed. The
MV portfolios built on the EuroStoxx and comple-
ment of ASPI universes also have ex-post volatili-
ties higher than the volatility of the ASPI MV port-
folio. This observation, together with that on the
optimality of smart beta solutions (cf. page 11), il-
lustrates the gap between ex ante optimisation and
ex post realisation. It may also illustrate the lower
quality of the statistical inputs obtained with the
EuroStoxx and complement of ASPI universes.

5 Robustness

As previously introduced, to treat the issue of sta-
bility of solutions given by MV, MDP and ERC
optimizations we used four different estimations of
the VCV matrix: the empirical, the constant corre-
lation and two shrinkage estimators23 (Ledoit and
Wolf [2004]). The different analysis we report in
this paper are done with the empirical VCV ma-
trix sample, and with the sample pooling the four
different VCV matrices.
Whatever the estimator, using an SRI universe is
seen to impact the characteristics (i.e. diversifica-
tion) of smart beta portfolios to the same degree.
However, we find some differences in the degree to
which use of smart beta strategies affects the per-
formance of SRI portfolios. For example, using the
Sharpe ratio, non-reported regression shows that
the constant VCV matrix yields portfolios with sig-
nificantly poorer performance. We observe lower
returns and higher variance of returns than for
portfolios built with other VCV matrices. In addi-
tion, the shrinkage estimators of the VCV matrix
yield portfolios with better performance than port-

folios built with empirical estimators of the VCV
matrix; but this latter observation is not statisti-
cally significant.
However, the use of more sophisticated estimators
of the VCV matrix leads to other significant advan-
tages. Non-reported regressions show that more so-
phisticated VCVmatrices significantly decrease the
turnover of weights and components. The smallest
improvement is obtained with the shrinkage toward
the constant VCV matrix. The shrinkage toward
the one-factor model and the constant VCV matrix
are equivalent.

6 Conclusion

Our intention here was to further explore smart
beta allocation by examining how using an SRI
universe impacts the characteristics of smart beta
portfolios. We studied four smart beta strategies,
the EW, the MDP, the MV and the ERC, using
three universes of stocks, the EuroStoxx, the ASPI
and the complement of ASPI universe. We worked
with four different estimators of the VCV matrix:
the empirical, the constant, the matrices shrunk
towards a constant and towards a one-actor model.
Six types of impact of using the ASPI universe of
stocks emerge from our study. First, smart beta
strategies applied on the EuroStoxx favour stocks
that do not belong to the ASPI universe. In fact,
the lists of components and the weights of over-
lapping components in EuroStoxx and ASPI differ
widely. Second, there is increased diversification of
the weight and risk measure distributions. Diversi-
fication also increases when we use the complement
of the ASPI universe; however the correlation is not
statistically significant and is lower than the one
obtained with the ASPI universe. These observa-
tions do not depend on type of VCV. Third, smart
beta portfolios built on the ASPI universe tend to
present higher weight and component turnovers.
Again, these observations do not depend on type of
VCV. Fourth, the distributions of returns of portfo-
lios built on the ASPI universe have positive skew-
ness, while with the two other universes, portfolios
have distributions of returns with negative skew-
ness. Fifth, the volatility of tracking error against
EuroStoxx of smart beta strategies built on the
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ASPI universe is lower than that of their respec-
tive counterparts built on the two other universes.
Moreover, on the ASPI universe, all the smart beta
strategies dominate the CW strategy, which is sim-
ilar to findings on the two other universes and con-
sistent with the empirical literature.
Hence, while recalling the usual limitations of back-
testing, we conclude that using smart beta strate-
gies in combination with the SRI approach some-
what modifies the properties of smart beta portfo-
lios. Adopting SRI thus cannot be considered neu-
tral and warrants careful attention from the insti-
tutional investor. A valuable extension of this work
would be to check the robustness of our results
using a different SRI universe with different rat-
ing methodology and covering different geographi-
cal zones.

Notes

1Though we are interested in risk-based alternative
weighting, we will stick to the term "smart beta" in the rest
of the article.

2Some of the implementation choices will be discussed in
this paper, in the section on data and methodology.

3The second justification for adoption of SRI ressembles
the intuition justifying alternative weighting schemes. Ac-
tually, SRI can be considered a smart beta approach, be-
tween fundamental and risk based allocations, where assets
that do not match extra-financial criteria are given a weight
equal to zero. Fundamental allocations define the weights
as a function of issuers’ fundamental statistics. See Arnott,
Hsu, and Moore [2005].

4The EuroStoxx is a subset of the EuroStoxx 600 that
contains a variable number of stocks, roughly 300, traded in
Eurozone countries. The ASPI is a subset of EuroStoxx that
contains the 120 best rated stocks. This social performance
rating is given by VIGEO. The complement of the ASPI in
the EuroStoxx universe is the universe of about 180 stocks
that are in the EuroStoxx but not in the ASPI.

5There is no weight equal to zero in the original theory,
but in practice see the numerical approach of Carvalho, Lu,
and Moulin [2012], and the analytical work of Clarke, Silva,
and Thorley [2012] that shows why stocks with particular
negative values of the beta with an ERC portfolio can be
excluded from the ERC.

6IEM is the firm in charge of calculation methodology
for the ASPI. VIGEO is a provider of social performance
ratings and sponsor of the ASPI.

7By construction EuroStoxx is a Euro Zone universe.

8As previously stated, the EuroStoxx is a subset of the
EuroStoxx 600 that contains a variable number of stocks,
roughly 300.

9For 2 rebalancing dates ASPI is defined by N=118 and
N=119.

10For some stocks historical series are shorter than the
VCV estimation window. For the ASPI universe, this con-
cerns two stocks out of 238, the smallest window is 100 days.
For EuroStoxx and complement of ASPI universe, this con-
cerns 53 stocks out of 536, the smallest windows is 12 days.

11Risk budget is defined as the product of the weight of
component i combined with its volatility.

12The benchmarks used are our replications of ASPI and
EuroStoxx CW indices.

13When D1 equals 1, it means that the two portfolios do
not overlap. The portfolios have different lists of compo-
nents. When D1 equals 0, it means that the two portfolio
are identical.

14When D2 equals 1, it means that the two lists of com-
ponents do not intersect. When D2 equals 0 it means that
one list is equal to, or included in, the other.

15The RMD is closely related to the Gini coefficient. The
closer the relative mean difference gets to zero the less con-
centrated the distribution is.

16We control for the case of perfect diversification for the
different VCV matrices. That is, the EW and weights, the
MDP, ERC and the risk contribution. We control for the
different types of characteristics analyzed.

17By definition T1 is between 0 and 2 for one rebalancing
and, for the first rebalancing, the turnover equals 1.

18By definition T2 is between 0 and 2 for one rebalancing
and, for the first rebalancing, the turnover equals 1.

19We do not report the results because of space con-
straints. They are available from the authors upon request

20The benchmarks used are our replications of ASPI and
EuroStoxx CW indices.

21The benchmarks used are our replications EuroStoxx
CW indices.

22The results in these three tables are obtained with em-
pirical covariance matrices, using daily returns for three dif-
ferent universes of stocks, the EuroStoxx, the ASPI and the
complement of the ASPI in the EuroStoxx universe.

23Shrinkage targets are the constant correlation and the
one-factor market model VCV matrices.

References

Arnott, Robert, Jason Hsu, and Philip Moore
(2005). “Fundamental Indexation”. In: Finan-
cial Analysts Journal 61, pp. 83–99.

19



P. Bertrand, V. Lapointe Working Paper

Beck, Nathaniel and Jonathan N. Katz (1995).
“What to do (and not to do) with Time-Series
Cross-Section Data”. In: The American Politi-
cal Science Review 89, pp. 643–647.

Boutin-Dufresne, François and Patrick Savaria
(2004). “Corporate Social Responsibility and
Financial Risk”. In: Journal of Investing 13,
pp. 57–66.

Brundtland, H. et al. (1987). Report of the World
Commission on Environment and Develop-
ment: Our Common Future. Tech. rep. United
Nation.

Carvalho, Raul Leote de, Xiao Lu, and
Pierre Moulin (2012). “Demystifying Equity
Risk–Based Strategies: A Simple Alpha plus
Beta Description”. In: Journal of Portfolio
Management 38, pp. 56–70.

Choueifaty, Yves and Yves Coignard (2008). “To-
wards maximum diversification”. In: Journal of
Portfolio Management 34, pp. 40–51.

Clarke, Roger, Harindra de Silva, and Steven Thor-
ley (2006). “Minimum-Variance Portfolios in
the U.S. Equity Market”. In: Journal of Port-
folio Management 33, pp. 10–24.

— (2012). Risk Parity, Maximum Diversification,
and Minimum Variance: An Analytic Perspec-
tive. Tech. rep. BYU & Analytic Investor, LLC.

Demey, Paul, Sébastien Maillard, and Thierry Ron-
calli (2010). Risk-Based Indexation. Tech. rep.
Lyxor.

DeMiguel, Victor, Lorenzo Garlappi, and Raman
Uppal (2009). “Optimal Versus Naive Diver-
sification: How Inefficient is the 1/N Portfolio

Strategy?” In: Review of Financial Studies 22,
pp. 1915–1953.

Hong, H. and M. Kacperczyk (2009). “The price of
sin: the effects of social norms on markets”. In:
Journal of Financial Economics 93, pp. 15–36.

Kitzmueller, Markus and Jay Shimshack (2012).
“Economic Perspectives on Corporate Social
Responsibility”. In: Journal of Economic Lit-
erature 50, pp. 51–84.

Ledoit, Olivier and Michael Wolf (2004). “Honey,
I Shrunk the Sample Covariance Matrix”. In:
Journal of Portfolio Management 30, pp. 110–
119.

Maillard, Sébastien, Thierry Roncalli, and Jérôme
Teiletche (2010). “On the properties of equally-
weighted risk contributions portfolios”. In:
Journal of Portfolio Management 36, pp. 60–
70.

Martellini, Lionel (2008). “Toward the design of
better equity benchmarks”. In: Journal of Port-
folio Management 34, pp. 1–8.

Renneboog, Luc, Jenke Ter Horst, and Chendi
Zhang (2008). “Socially responsible invest-
ments: Institutional aspects, performance, and
investor behavior”. In: Journal of Banking and
Finance 32, pp. 1723–1742.

Scherer, Bernd (2011). “A note on the returns from
minimum variance investing”. In: Journal of
Empirical Finance 18, pp. 652–660.

Waddock, Sandra A. and Samuel B. Graves (1997).
“The Corporate Social Performance-Financial
Performance Link”. In: Strategic Management
Journal 18, pp. 303–319.

20


